Single-Nucleotide Polymorphism (SNP) Analysis to Associate Cancer Risk

  • Julie Earl
  • William Greenhalf
Part of the Methods in Molecular Biology book series (MIMB, volume 576)


Identification of hereditary factors that predispose to cancer allows targeted cancer screening and better quantification of environmental risk factors. The ability to identify which single nucleotide polymorphisms (SNPs) are associated with cancer or segregate with disease in families allows high-risk loci to be identified. In this chapter, two platforms for analysing SNPs are discussed, the Affymetrix and Illumina systems. Application of both platforms requires the same principles of good laboratory practice but there are important differences in materials and methods, which will be discussed.

Key words

Familial cancer Arrays Association Linkage 


  1. 1.
    Mateu, E., Sanchez, F., Najera, C., Beneyto, M., Castell, V., Hernandez, M., et al. (1997) Genetics of retinoblastoma: A study. Cancer Genet Cytogenet 95, 40–50.CrossRefPubMedGoogle Scholar
  2. 2.
    Kartheuser, A., West, S., Walon, C., Curtis, A., Hamzehloei, T., Lannoy, N., et al. (1995) The genetic background of familial adenomatous polyposis. Linkage analysis, the APC gene identification and mutation screening. Acta Gastroenterol Belg 58, 433–51.PubMedGoogle Scholar
  3. 3.
    Kohonencorish, M. R. J., Doe, W. F., Stjohn, D. J. B., and Macrae, F. A. (1995) Chromosome 2p linkage analysis in hereditary nonpolyposis colon-cancer. J Gastroenterol Hepatol 10, 76–80.CrossRefGoogle Scholar
  4. 4.
    Froggatt, N. J., Koch, J., Davies, R., Evans, D. G. R., Clamp, A., Quarrell, O. W. J., et al. (1995) Genetic-linkage analysis in hereditary nonpolyposis colon-cancer syndrome. J Med Genet 32, 352–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Green, R. C., Narod, S. A., Morasse, J., Young, T. L., Cox, J., Fitzgerald, G. W. N., et al. (1994) Hereditary nonpolyposis colon-cancer – analysis of linkage to 2p15–16 places the COCA1 locus telomeric to D2s123 and reveals genetic-heterogeneity in seven Canadian families. Am J Hum Genet 54, 1067–77.PubMedGoogle Scholar
  6. 6.
    Nakagawa, H., Koyama, K., Tanaka, T., Miyoshi, Y., Ando, H., Baba, S., et al. (1998) Localization of the gene responsible for Peutz-Jeghers syndrome within a 6-cM region of chromosome 19p13.3. Hum Genet 102, 203–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Mehenni, H., Blouin, J. L., Radhakrishna, U., Bhardwaj, S. S., Bhardwaj, K., Dixit, V. B., et al. (1997) Peutz-Jeghers syndrome: Confirmation of linkage to chromosome 19p13.3 and identification of a potential second locus, on 19q13.4. Am J Hum Genet 61, 1327–34.CrossRefPubMedGoogle Scholar
  8. 8.
    Schaid, D. J., McDonnell, S. K., Blute, M. L., and Thibodeau, S. N. (1998) Evidence for autosomal dominant inheritance of prostate cancer. Am J Hum Genet 62, 1425–38.CrossRefPubMedGoogle Scholar
  9. 9.
    Bonadona, V., and Lasset, C. (2003) Inherited predisposition to breast cancer: After the BRCA1 and BRCA2 genes, what next? Bull Cancer 90, 587–94.PubMedGoogle Scholar
  10. 10.
    Iobagiu, C., Lambert, C., Normand, M., and Genin, C. (2006) Microsatellite profile in hormonal receptor genes associated with breast cancer. Breast Cancer Res Treat 95, 153–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Driscoll, C. A., Menotti-Raymond, M., Nelson, G., Goldstein, D., and O’Brien, S. J. (2002) Genomic microsatellites as evolutionary chronometers: A test in wild cats. Genome Res 12, 414–23.CrossRefPubMedGoogle Scholar
  12. 12.
    Fredriksson, H., Ikonen, T., Autio, V., Matikainen, M. P., Helin, H. J., Tammela, T. L., et al. (2006) Identification of germline MLH1 alterations in familial prostate cancer. Eur J Cancer 42, 2802–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Gillanders, E. M., Pearson, J. V., Sorant, A. J., Trent, J. M., O’Connell, J. R., and Bailey-Wilson, J. E. (2006) The value of molecular haplotypes in a family-based linkage study. Am J Hum Genet 79, 458–68.CrossRefPubMedGoogle Scholar
  14. 14.
    Tanaka, Y., Hirata, H., Chen, Z., Kikuno, N., Kawamoto, K., Majid, S., et al. (2007) Polymorphisms of catechol-O-methyltransferase in men with renal cell cancer. Cancer Epidemiol Biomarkers Prev 16, 92–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Kamio, K., Matsushita, I., Tanaka, G., Ohashi, J., Hijikata, M., Nakata, K., et al. (2004) Direct determination of MUC5B promoter haplotypes based on the method of single-strand conformation polymorphism and their statistical estimation. Genomics 84, 613–22.CrossRefPubMedGoogle Scholar
  16. 16.
    Verma, M., and Kumar, D. (2007) Application of mitochondrial genome information in cancer epidemiology. Clin Chim Acta 383, 41–50.CrossRefPubMedGoogle Scholar
  17. 17.
    Fan, J. B., Gunderson, K. L., Bibikova, M., Yeakley, J. M., Chen, J., Wickham Garcia, E., et al. (2006) Illumina universal bead arrays. Methods Enzymol 410, 57–73.CrossRefPubMedGoogle Scholar
  18. 18.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Clark-Langone, K. M., Wu, J. Y., Sangli, C., Chen, A., Snable, J. L., Nguyen, A., et al. (2007) Biomarker discovery for colon cancer using a 761 gene RT-PCR assay. BMC Genomics 8, 279.CrossRefPubMedGoogle Scholar
  20. 20.
    Lind, G. E., Kleivi, K., Meling, G. I., Teixeira, M. R., Thiis-Evensen, E., Rognum, T. O., et al. (2006) ADAMTS1, CRABP1, and NR3C1 identified as epigenetically deregulated genes in colorectal tumorigenesis. Cell Oncol 28, 259–72.PubMedGoogle Scholar
  21. 21.
    Weber, A., Hengge, U. R., Stricker, I., Tischoff, I., Markwart, A., Anhalt, K., et al. (2007) Protein microarrays for the detection of biomarkers in head and neck squamous cell carcinomas. Hum Pathol 38, 228–38.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhao, H. J., Ramos, C. F., Brooks, J. D., and Peehl, D. M. (2007) Distinctive gene expression of prostatic stromal cells cultured from diseased versus normal tissues. J Cell Physiol 210, 111–21.CrossRefPubMedGoogle Scholar
  23. 23.
    Michels, E., De Preter, K., Van Roy, N., and Speleman, F. (2007) Detection of DNA copy number alterations in cancer by array comparative genomic hybridization. Genet Med 9, 574–84.CrossRefPubMedGoogle Scholar
  24. 24.
    Nowak, N. J., Miecznikowski, J., Moore, S. R., Gaile, D., Bobadilla, D., Smith, D. D., et al. (2007) Challenges in array comparative genomic hybridization for the analysis of cancer samples. Genet Med 9, 585–95.CrossRefPubMedGoogle Scholar
  25. 25.
    Cao, X., Eu, K. W., Kumarasinghe, M. P., Li, H. H., Loi, C., and Cheah, P. Y. (2006) Mapping of hereditary mixed polyposis syndrome (HMPS) to chromosome 10q23 by genomewide high-density single nucleotide polymorphism (SNP) scan and identification of BMPR1A loss of function. J Med Genet 43, e13.CrossRefPubMedGoogle Scholar
  26. 26.
    Kader, A. K., Shao, L., Dinney, C. P., Schabath, M. B., Wang, Y., Liu, J., et al. (2006) Matrix metalloproteinase polymorphisms and bladder cancer risk. Cancer Res 66, 11644–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Zheng, S. L., Sun, J., Cheng, Y., Li, G., Hsu, F. C., Zhu, Y., et al. (2007) Association between two unlinked loci at 8q24 and prostate cancer risk among European Americans. J Natl Cancer Inst 99, 1525–33.CrossRefPubMedGoogle Scholar
  28. 28.
    Berndt, S. I., Platz, E. A., Fallin, M. D., Thuita, L. W., Hoffman, S. C., and Helzlsouer, K. J. (2007) Mismatch repair polymorphisms and the risk of colorectal cancer. Int J Cancer 120, 1548–54.CrossRefPubMedGoogle Scholar
  29. 29.
    Peiffer, D. A., Le, J. M., Steemers, F. J., Chang, W., Jenniges, T., Garcia, F., et al. (2006) High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 16, 1136–48.CrossRefPubMedGoogle Scholar
  30. 30.
    Botstein, D., and Risch, N. (2003) Discovering genotypes underlying human phenotypes: Past successes for mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl), 228–37.CrossRefPubMedGoogle Scholar
  31. 31.
    Nicolas, P., Sun, F., and Li, L. M. (2006) A model-based approach to selection of tag SNPs. BMC Bioinformatics 7, 303.CrossRefPubMedGoogle Scholar
  32. 32.
    Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., et al. (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20, 207–11.CrossRefPubMedGoogle Scholar
  33. 33.
    Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., et al. (2001) Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet 29, 365–71.CrossRefPubMedGoogle Scholar
  34. 34.
    Barker, D. L., Hansen, M. S., Faruqi, A. F., Giannola, D., Irsula, O. R., Lasken, R. S., et al. (2004) Two methods of whole-genome amplification enable accurate genotyping across a 2320-SNP linkage panel. Genome Res 14, 901–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Pask, R., Rance, H. E., Barratt, B. J., Nutland, S., Smyth, D. J., Sebastian, M., et al. (2004) Investigating the utility of combining phi29 whole genome amplification and highly multiplexed single nucleotide polymorphism BeadArray genotyping. BMC Biotechnol 4, 15.CrossRefPubMedGoogle Scholar
  36. 36.
    Sawcer, S., Ban, M., Maranian, M., Yeo, T. W., Compston, A., Kirby, A., et al. (2005) A high-density screen for linkage in multiple sclerosis. Am J Hum Genet 77, 454–67.CrossRefPubMedGoogle Scholar
  37. 37.
    Affymetrix Genechip® Mapping 500K Assay Manual.
  38. 38.
    Gunderson, K. L., Kruglyak, S., Graige, M. S., Garcia, F., Kermani, B. G., Zhao, C., et al. (2004) Decoding randomly ordered DNA arrays. Genome Res 14, 870–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Gudmundsson, J., Sulem, P., Steinthorsdottir, V., Bergthorsson, J. T., Thorleifsson, G., Manolescu, A., et al. (2007) Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 39, 977–83.CrossRefPubMedGoogle Scholar
  40. 40.
    Hunter, D. J., Kraft, P., Jacobs, K. B., Cox, D. G., Yeager, M., Hankinson, S. E., et al. (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39, 870–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Stacey, S. N., Manolescu, A., Sulem, P., Rafnar, T., Gudmundsson, J., Gudjonsson, S. A., et al. (2007) Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39, 865–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Broderick, P., Carvajal-Carmona, L., Pittman, A. M., Webb, E., Howarth, K., Rowan, A., et al. (2007) A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet 39, 1315–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Tomlinson, I., Webb, E., Carvajal-Carmona, L., Broderick, P., Kemp, Z., Spain, S., et al. (2007) A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 39, 984–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Zanke, B. W., Greenwood, C. M., Rangrej, J., Kustra, R., Tenesa, A., Farrington, S. M., et al. (2007) Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 39, 989–94.CrossRefPubMedGoogle Scholar
  45. 45.
    Hu, N., Wang, C., Hu, Y., Yang, H. H., Giffen, C., Tang, Z. Z., et al. (2005) Genome-wide association study in esophageal cancer using GeneChip mapping 10K array. Cancer Res 65, 2542–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Easton, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D., Thompson, D., Ballinger, D. G., et al. (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–93.CrossRefPubMedGoogle Scholar
  47. 47.
    Illumina Illumina product guide 2006–2007.

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Julie Earl
    • 1
  • William Greenhalf
    • 1
  1. 1.Division of Surgery and OncologyUniversity of LiverpoolLiverpoolUK

Personalised recommendations