Using the Light Scattering Component of Optical Intrinsic Signals to Visualize In Vivo Functional Structures of Neural Tissues

  • Uma Maheswari Rajagopalan
  • Kazushige Tsunoda
  • Manabu Tanifuji
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 489)

Abstract

Visualization of changes in reflected light from in vivo brain tissues reveals spatial patterns of neural activity. An important factor which influences the degree of light reflected includes the change in light scattering elicited by neural activation. Microstructures of neural tissues generally cause light scattering, and neural activities are associated with some changes in the microstructures. Here, we show that the optical properties unique to light scattering enable us to visualize spatial patterns of retinal activity non-invasively (FRG: functional retinography), and resolve functional structures in depth (fOCT: functional optical coherence tomography).

Key words

Intrinisic signal imaging OCT optical coherence tomography light scattering 

References

  1. 1.
    Blasdel, G.G. and Salama, G. (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321 (6070), 579–585CrossRefPubMedGoogle Scholar
  2. 2.
    Grinvald, A. et al. (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324 (6095), 361–364.CrossRefPubMedGoogle Scholar
  3. 3.
    Ts’o, D.Y. et al. (1990) Functional organization of primate visual cortex revealed by high resolution optical imaging. Science 249 (4967), 417–420.CrossRefPubMedGoogle Scholar
  4. 4.
    Bonhoeffer, T. and Grinvald, A. (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353 (6343), 429–431.CrossRefPubMedGoogle Scholar
  5. 5.
    Malonek, D. et al. (1994) Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT. Proc R Soc Lond B Biol Sci 258 (1352), 109–119.CrossRefGoogle Scholar
  6. 6.
    Roe, A.W. and Ts’o, D.Y. (1995) Visual topography in primate V2: Multiple representation across functional stripes. J Neurosci 15 (5 Pt 2), 3689–3715.PubMedGoogle Scholar
  7. 7.
    Wang, G. et al. (1998) Functional architecture in monkey inferotemporal cortex revealed by in vivo optical imaging. Neurosci Res 32 (1), 33–46CrossRefPubMedGoogle Scholar
  8. 8.
    Uchida, N. et al. (2000) Odor maps in the mammalian olfactory bulb: Domain organization and odorant structural features. Nat Neurosci 3 (10), 1035–1043.CrossRefPubMedGoogle Scholar
  9. 9.
    Tsunoda, K. et al. (2001) Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns. Nat Neurosci 4 (8), 832–838.CrossRefPubMedGoogle Scholar
  10. 10.
    Vanzetta, I. and Grinvald, A. (1999) Increased cortical oxidative metabolism due to sensory stimulation: Implications for functional brain imaging. Science 286 (5444), 1555–1558CrossRefPubMedGoogle Scholar
  11. 11.
    Vanzetta, I. et al. (2004) Columnar resolution of blood volume and oximetry functional maps in the behaving monkey; implications for FMRI. Neuron 42 (5), 843–854CrossRefPubMedGoogle Scholar
  12. 12.
    Fukuda, M. et al. (2005) Localization of activity-dependent changes in blood volume to submillimeter-scale functional domains in cat visual cortex. Cereb Cortex 15 (6), 823–833CrossRefPubMedGoogle Scholar
  13. 13.
    Tsunoda, K. et al. (2004) Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging. Invest Ophthalmol Vis Sci 45 (10), 3820–3826CrossRefPubMedGoogle Scholar
  14. 14.
    Hanazono, G. et al. (2007) Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins. Invest Ophthalmol Vis Sci 48, 2903–2912CrossRefPubMedGoogle Scholar
  15. 15.
    Bowmaker, J.K. et al. (1980) Microspectrophotometric demonstration of four classes of photoreceptor in an old world primate, Macaca fascicularis. J Physiol 298, 131–143PubMedGoogle Scholar
  16. 16.
    Kilbride, P.E. et al. (1983) Determination of human cone pigment density difference spectra in spatially resolved regions of the fovea. Vision Res 23 (12), 1341–1350CrossRefPubMedGoogle Scholar
  17. 17.
    Kilbride, P.E. et al. (1989) Human macular pigment assessed by imaging fundus reflectometry. Vision Res 29 (6), 663–674CrossRefPubMedGoogle Scholar
  18. 18.
    Elsner, A.E. et al. (1993) Mapping cone photopigment optical density. J Opt Soc Am A 10 (1), 52–58CrossRefPubMedGoogle Scholar
  19. 19.
    Mandelbaum, J. and Sloan, L.L. (1947) Peripheral visual acuity. Am J Ophthalmol 30, 581–588PubMedGoogle Scholar
  20. 20.
    Birch, D.G. et al. (1987) The relationship between rod perimetric thresholds and full-field rod ERGs in retinitis pigmentosa. Invest Ophthalmol Vis Sci 28 (6), 954–965PubMedGoogle Scholar
  21. 21.
    Pulos, E. (1989) Changes in rod sensitivity through adulthood. Invest Ophthalmol Vis Sci 30 (8), 1738–1742PubMedGoogle Scholar
  22. 22.
    Osterberg, G. (1935) Topography of the layer of rods and cones in the human retina. Acta ophthalmol 13 (Suppl 6), 6–97Google Scholar
  23. 23.
    Curcio, C.A. et al. (1987) Distribution of cones in human and monkey retina: Individual variability and radial asymmetry. Science 236 (4801), 579–582CrossRefPubMedGoogle Scholar
  24. 24.
    Packer, O. et al. (1989) Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina). J Comp Neurol 288 (1), 165–183CrossRefPubMedGoogle Scholar
  25. 25.
    Sutter, E.E. and Tran, D. (1992) The field topography of ERG components in man – I. The photopic luminance response. Vision Res 32 (3), 433–446CrossRefPubMedGoogle Scholar
  26. 26.
    Weinhaus, R.S. et al. (1995) Comparison of fluorescein angiography with microvascular anatomy of macaque retinas. Exp Eye Res 61 (1), 1–16CrossRefPubMedGoogle Scholar
  27. 27.
    Bonhoeffer, T. and Grinvald, A. (1996) Optical Imaging Based on Intrinsic Signals: The Methodology. In Brain Mapping (Toga, A.W. and Mazziotta, J.C., eds.), pp. 55–97, Academic Press, New YorkGoogle Scholar
  28. 28.
    Yao, X.C. et al. (2005) Rapid optical coherence tomography and recording functional scattering changes from activated frog retina. Appl Opt 44 (11), 2019–2023CrossRefPubMedGoogle Scholar
  29. 29.
    Bizheva, K. et al. (2006) Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. Proc Natl Acad Sci U S A 103 (13), 5066–5071CrossRefPubMedGoogle Scholar
  30. 30.
    Srinivasan, V.J. et al. (2006) In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography. Opt Lett 31 (15), 2308—2310CrossRefPubMedGoogle Scholar
  31. 31.
    Huang, D. et al. (1991) Optical coherence tomography. Science 254 (5035), 1178–1181CrossRefPubMedGoogle Scholar
  32. 32.
    Bouma, B.E. and Tearney, G.J. (2002) Handbook of Optical Coherence Tomography, Marcel Dekker Inc.Google Scholar
  33. 33.
    Malonek, D. et al. (1997) Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation. Proc Natl Acad Sci U S A 94 (26), 14826–14831CrossRefPubMedGoogle Scholar
  34. 34.
    Tomita, M. et al. (1983) Effects of hemolysis, hematocrit, RBC swelling, and flow rate on light scattering by blood in a 0.26 cm ID transparent tube. Biorheology 20 (5), 485–494PubMedGoogle Scholar
  35. 35.
    Holthoff, K. and Witte, O.W. (1998) Intrinsic optical signals in vitro: A tool to measure alterations in extracellular space with two-dimensional resolution. Brain Res Bull 47 (6), 649–655CrossRefPubMedGoogle Scholar
  36. 36.
    Rajagopalan, U.M. et al. (2003) Functional optical coherence tomography to reveal functional architecture of cat visual cortex in vivo. In Proceedings of SPIE (Vol. 5140), pp. 77–83Google Scholar
  37. 37.
    Maheswari, R.U. et al. (2003) Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo. J Neurosci Methods 124 (1), 83–92CrossRefPubMedGoogle Scholar
  38. 38.
    Lazebnik, M. et al. (2003) Functional optical coherence tomography for detecting neural activity through scattering changes. Opt Lett 28 (14), 1218–1220CrossRefPubMedGoogle Scholar
  39. 39.
    Hubel, D.H. and Wiesel, T.N. (1977) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci (198), 1–59CrossRefPubMedGoogle Scholar
  40. 40.
    Rajagopalan, U.M. et al. (1999) An optical coherence tomographic imaging system for investigating cortical functional organization of brain: A simulation study. In The International Society for Optical Engineering (Vol. 3749), pp. 400–401Google Scholar
  41. 41.
    Bonhoeffer, T. and Grinvald, A. (1993) Optical imaging of the functional architecture in cat visual cortex: the layout of direction and orientation domains. Adv Exp Med Biol 333, 57–69PubMedGoogle Scholar
  42. 42.
    Hanazona, G. et al. (2008) Evaluating neural activity of retinal ganglion cells by flash-evoked intrinsic signal imaging in macaque retina. Invest ophthalmol vis sci in pressGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Uma Maheswari Rajagopalan
    • 1
  • Kazushige Tsunoda
    • 1
    • 2
  • Manabu Tanifuji
    • 1
  1. 1.Laboratory for Integrative Neural Systems, RIKEN Brain Science InstituteJapan
  2. 2.Laboratory of Visual Physiology, National Institute of Sensory OrgansJapan

Personalised recommendations