Astrocytic Calcium Signaling: Mechanism and Implications for Functional Brain Imaging

  • Xiaohai Wang
  • Takahiro Takano
  • Maiken Nedergaard
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 489)

Abstract

Astrocytes are electrically non-excitable cells that, on a slow time scale of seconds, integrate synaptic transmission by dynamic increases in cytosolic Ca2+. A number of groups have recently shown that astrocytic Ca2+ signaling regulates vascular tones and that astrocytes play a central role in functional hyperemia by Ca2+-dependent release of Prostaglandin E2 (PGE2). Astrocytes are, however, not simple detectors of excitatory transmission, since a number of neuromodulator and hormones trigger elevations in astrocytic Ca2+ independently of synaptic transmission. Furthermore, astrocytes exhibit ex vivo intrinsic Ca2+ excitability, or spontaneous increases in Ca2+ that are not triggered by receptor activation. The notion that astrocytes can regulate vascular tone independently of synaptic transmission challenges the notion that changes in the blood oxygenation level dependent (BOLD) signal is directly proportional to neuronal activity and may thus require a reevaluation of the large body of data accumulated using functional magnetic resonance imaging (fMRI).

Key words

Photolysis 2-photon imaging functional brain imaging 

Notes

Acknowledgments

This work was supported by NINDS/NIH NS030007, NS038073, NS50315.

References

  1. 1.
    Cornell-Bell, A.H., et al., Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science, 1990. 247(4941): pp. 470–3.CrossRefPubMedGoogle Scholar
  2. 2.
    Nedergaard, M., Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science, 1994. 263(5154): pp. 1768–71.CrossRefPubMedGoogle Scholar
  3. 3.
    Parpura, V., et al., Glutamate-mediated astrocyte-neuron signalling. Nature, 1994. 369(6483): pp. 744–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Kang, J., et al., Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci, 1998. 1(8): pp. 683–92.CrossRefPubMedGoogle Scholar
  5. 5.
    Porter, J.T. and K.D. McCarthy, Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci, 1996. 16(16): pp. 5073–81.PubMedGoogle Scholar
  6. 6.
    Pasti, L., et al., Intracellular calcium oscillations in astrocytes: A highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci, 1997. 17(20): pp. 7817–30.PubMedGoogle Scholar
  7. 7.
    Pascual, O., et al., Astrocytic purinergic signaling coordinates synaptic networks. Science, 2005. 310(5745): pp. 113–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Newman, E.A. and K.R. Zahs, Modulation of neuronal activity by glial cells in the retina. J Neurosci, 1998. 18(11): pp. 4022–8.PubMedGoogle Scholar
  9. 9.
    Wang, X., et al., Astrocytic Ca(2+) signaling evoked by sensory stimulation in vivo. Nat Neurosci, 2006. 9(6): pp. 816–23.CrossRefPubMedGoogle Scholar
  10. 10.
    Zonta, M., et al., Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci, 2003. 6(1): pp. 43–50.CrossRefPubMedGoogle Scholar
  11. 11.
    Araque, A., et al., Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci, 1998. 18(17): pp. 6822–9.PubMedGoogle Scholar
  12. 12.
    Rzigalinski, B.A., et al., Intracellular free calcium dynamics in stretch-injured astrocytes. J Neurochem, 1998. 70(6): pp. 2377–85.CrossRefPubMedGoogle Scholar
  13. 13.
    Fellin, T., et al., Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron, 2004. 43(5): pp. 729–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Newman, E.A., Calcium increases in retinal glial cells evoked by light-induced neuronal activity. J Neurosci, 2005. 25(23): pp. 5502–10.CrossRefPubMedGoogle Scholar
  15. 15.
    Haydon, P.G. and G. Carmignoto, Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev, 2006. 86(3): pp. 1009–31.CrossRefPubMedGoogle Scholar
  16. 16.
    Fox, P.T. and M.E. Raichle, Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A, 1986. 83(4): pp. 1140–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Mulligan, S.J. and B.A. MacVicar, Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature, 2004. 431(7005): pp. 195–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Metea, M.R. and E.A. Newman, Glial cells dilate and constrict blood vessels: A mechanism of neurovascular coupling. J Neurosci, 2006. 26(11): pp. 2862–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Filosa, J.A., et al., Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci, 2006. 9(11): pp. 1397–403.CrossRefPubMedGoogle Scholar
  20. 20.
    Peppiatt, C.M., et al., Bidirectional control of CNS capillary diameter by pericytes. Nature, 2006. 443(7112): pp. 700–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Mathiesen, C., K. Caesar, and M. Lauritzen, Temporal coupling between neuronal activity and blood flow in rat cerebellar cortex as indicated by field potential analysis. J Physiol, 2000. 523 Pt 1: pp. 235–46.CrossRefPubMedGoogle Scholar
  22. 22.
    Ngai, A.C., et al., Frequency-dependent changes in cerebral blood flow and evoked potentials during somatosensory stimulation in the rat. Brain Res, 1999. 837(1–2): pp. 221–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Charles, A.C., Glia-neuron intercellular calcium signaling. Dev Neurosci, 1994. 16(3–4): pp. 196–206.CrossRefPubMedGoogle Scholar
  24. 24.
    Porter, J.T. and K.D. McCarthy, Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol, 1997. 51(4): pp. 439–55.CrossRefPubMedGoogle Scholar
  25. 25.
    Duffy, S. and B.A. MacVicar, Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J Neurosci, 1995. 15(8): pp. 5535–50.PubMedGoogle Scholar
  26. 26.
    Perea, G. and A. Araque, Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci, 2005. 25(9): pp. 2192–203.CrossRefPubMedGoogle Scholar
  27. 27.
    Verkhratsky, A., R.K. Orkand, and H. Kettenmann, Glial calcium: Homeostasis and signaling function. Physiol Rev, 1998. 78(1): pp. 99–141.PubMedGoogle Scholar
  28. 28.
    Volterra, A. and J. Meldolesi, Astrocytes, from brain glue to communication elements: The revolution continues. Nat Rev Neurosci, 2005. 6(8): pp. 626–40.CrossRefPubMedGoogle Scholar
  29. 29.
    Bergles, D.E. and C.E. Jahr, Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron, 1997. 19(6): pp. 1297–308.CrossRefPubMedGoogle Scholar
  30. 30.
    Porter, J.T. and K.D. McCarthy, - Astrocytic neurotransmitter receptors in situ and in vivo. 1997. 51: p. 455.Google Scholar
  31. 31.
    Matsui, K. and C.E. Jahr, Ectopic release of synaptic vesicles. Neuron, 2003. 40(6): pp. 1173–83.CrossRefPubMedGoogle Scholar
  32. 32.
    Zoli, M., et al., The emergence of the volume transmission concept. Brain Res Brain Res Rev, 1998. 26(2–3): pp. 136–47.CrossRefPubMedGoogle Scholar
  33. 33.
    Cotrina, M.L., J.H. Lin, and M. Nedergaard, Cytoskeletal assembly and ATP release regulate astrocytic calcium signaling. J Neurosci, 1998. 18(21): pp. 8794–804.PubMedGoogle Scholar
  34. 34.
    Schell, M.J., M.E. Molliver, and S.H. Snyder, D-serine, an endogenous synaptic modulator: Localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A, 1995. 92(9): pp. 3948–52.CrossRefPubMedGoogle Scholar
  35. 35.
    Beattie, E.C., et al., Control of synaptic strength by glial TNFalpha. Science, 2002. 295(5563): pp. 2282–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Simard, M., et al., Signaling at the gliovascular interface. J Neurosci, 2003. 23(27): pp. 9254–62.PubMedGoogle Scholar
  37. 37.
    Price, D.L., et al., Distribution of rSlo Ca2+-activated K+ channels in rat astrocyte perivascular endfeet. Brain Res, 2002. 956(2): pp. 183–93.CrossRefPubMedGoogle Scholar
  38. 38.
    Filosa, J.A., A.D. Bonev, and M.T. Nelson, Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ Res, 2004. 95(10): pp. e73–81.CrossRefPubMedGoogle Scholar
  39. 39.
    Denk, W., J.H. Strickler, and W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science, 1990. 248(4951): pp. 73–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Stosiek, C., et al., In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A, 2003. 100(12): pp. 7319–24.CrossRefPubMedGoogle Scholar
  41. 41.
    Hirase, H., et al., Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol, 2004. 2(4): pp. E96.CrossRefPubMedGoogle Scholar
  42. 42.
    Svoboda, K. and R. Yasuda, Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron, 2006. 50(6): pp. 823–39.CrossRefPubMedGoogle Scholar
  43. 43.
    Svoboda, K., et al., Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo. Nat Neurosci, 1999. 2(1): pp. 65–73.CrossRefPubMedGoogle Scholar
  44. 44.
    Nimmerjahn, A., et al., Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods, 2004. 1(1): pp. 31–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Friedberg, M.H., S.M. Lee, and F.F. Ebner, Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. J Neurophysiol, 1999. 81(5): pp. 2243–52.PubMedGoogle Scholar
  46. 46.
    Kerr, J.N., D. Greenberg, and F. Helmchen, Imaging input and output of neocortical networks in vivo. Proc Natl Acad Sci U S A, 2005. 102(39): pp. 14063–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Kang, J., et al., Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci, 1998. 1(8): pp. 683–92.CrossRefPubMedGoogle Scholar
  48. 48.
    Sosnik, R., S. Haidarliu, and E. Ahissar, Temporal frequency of whisker movement. I. Representations in brain stem and thalamus. J Neurophysiol, 2001. 86(1): pp. 339–53.PubMedGoogle Scholar
  49. 49.
    Pinto, D.J., J.C. Brumberg, and D.J. Simons, Circuit dynamics and coding strategies in rodent somatosensory cortex. J Neurophysiol, 2000. 83(3): pp. 1158–66.PubMedGoogle Scholar
  50. 50.
    Petersen, C.C., A. Grinvald, and B. Sakmann, Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci, 2003. 23(4): pp. 1298–309.PubMedGoogle Scholar
  51. 51.
    Takano, T., et al., Astrocyte-mediated control of cerebral blood flow. Nat Neurosci, 2006. 9(2): pp. 260–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Logothetis, N.K. and B.A. Wandell, Interpreting the BOLD signal. Annu Rev Physiol, 2004. 66: pp. 735–69.CrossRefPubMedGoogle Scholar
  53. 53.
    Mathiesen, C., et al., Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol, 1998. 512 (Pt 2): pp. 555–66.CrossRefPubMedGoogle Scholar
  54. 54.
    Peppiatt, C. and D. Attwell, Neurobiology: Feeding the brain. Nature, 2004. 431(7005): pp. 137–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Lauritzen, M., Reading vascular changes in brain imaging: Is dendritic calcium the key? Nat Rev Neurosci, 2005. 6(1): pp. 77–85.CrossRefPubMedGoogle Scholar
  56. 56.
    Bergles, D.E., J.S. Diamond, and C.E. Jahr, Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol, 1999. 9(3): pp. 293–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Pellerin, L. and P.J. Magistretti, Food for thought: Challenging the dogmas. J Cereb Blood Flow Metab, 2003. 23(11): pp. 1282–6.CrossRefPubMedGoogle Scholar
  58. 58.
    Pellerin, L. and P.J. Magistretti, Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A, 1994. 91(22): pp. 10625–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Dienel, G.A. and N.F. Cruz, Nutrition during brain activation: Does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem Int, 2004. 45(2–3): pp. 321–51.Google Scholar
  60. 60.
    Pysh, Y. and T. Khan, Variation in mitochondrial structure and content of neurons and neuroglia in rat brain: An electron microscopic study. Brain Research, 1972. 36(1):pp. 1–18.CrossRefPubMedGoogle Scholar
  61. 61.
    Peters, A., L.P. Sandford, and H.D. Webster, Fine structure of the Nervous System: Neurons and Their Supporting Cells. 3rd edition ed. 1991: Oxford University Press, Oxford.Google Scholar
  62. 62.
    Hertz, L., L. Peng, and G. Dienel, Energy metabolism in astrocytes: High rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. Journal of Cerebral Blood Flow & Metabolism, 2007. 27: pp. 219–249.CrossRefGoogle Scholar
  63. 63.
    van den Pol, A.N., C. Romano, and P. Ghosh, Metabotropic glutamate receptor mGluR5 subcellular distribution and developmental expression in hypothalamus. J Comp Neurol, 1995. 362(1): pp. 134–50.CrossRefPubMedGoogle Scholar
  64. 64.
    Munoz, A., X.B. Liu, and E.G. Jones, Development of metabotropic glutamate receptors from trigeminal nuclei to barrel cortex in postnatal mouse. J Comp Neurol, 1999. 409(4): pp. 549–66.CrossRefPubMedGoogle Scholar
  65. 65.
    Brookes, P.S., et al., Calcium, ATP, and ROS: A mitochondrial love-hate triangle. Am J Physiol Cell Physiol, 2004. 287(4): pp. C817–33.CrossRefPubMedGoogle Scholar
  66. 66.
    Attwell, D. and S. Laughlin, An Energy Budget for Signaling in the Grey Matter of the Brain. Journal of Cerebral Blood Flow and Metabolism, 2001. 21: pp. 1133–1145.PubMedGoogle Scholar
  67. 67.
    Lebon, V., et al., Astroglial Contribution to Brain Energy Metabolism in Humans Revealed by 13C Nuclear Magnetic Resonance Spectroscopy: Elucidation of the Dominant Pathway for Neurotransmitter Glutamate Repletion and Measurement of Astrocytic Oxidative Metabolism. J Neurosci, 2002. 22(5): pp. 1523–1531.PubMedGoogle Scholar
  68. 68.
    Oz, G., et al., Neuroglial Metabolism in the Awake Rat Brain: CO2 Fixation Increases with Brain Activity. The Journal of Neuroscience, 2004. 22(50): pp. 11273–11279.CrossRefGoogle Scholar
  69. 69.
    Kahlert, S. and G. Reiser, Requirement of Glycolytic and Mitochondrial Energy Supply for Loading of Ca2+ Stores and InsP3-Mediated Ca2+ Signaling in Rat Hippocampus Astrocytes. J Neurosci Res, 2000. 61: pp. 409–420.CrossRefPubMedGoogle Scholar
  70. 70.
    Feustel, P.J., Y. Jin, and H.K. Kimelberg, Volume-regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra. 2004. 35: p. 1168.Google Scholar
  71. 71.
    Arcuino, G., et al., Intercellular calcium signaling mediated by point-source burst release of ATP. Proc Natl Acad Sci U S A, 2002. 99(15): pp. 9840–5.CrossRefPubMedGoogle Scholar
  72. 72.
    Zhang, J.M., et al., ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron, 2003. 40(5): pp. 971–82.CrossRefPubMedGoogle Scholar
  73. 73.
    Davalos, D., et al., ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci, 2005. 8(6): pp. 752–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Brennan, A.M., J.A. Connor, and C.W. Shuttleworth, NAD(P)H fluorescent transients after synaptic activity in brain slices: Predominant role of mitochondrial function. J Cereb Blood Flow Metab, 2006. 26(11): pp. 1389–406.CrossRefPubMedGoogle Scholar
  75. 75.
    Takano, T., et al., Cortical spreading depression causes and coincides with tissue hypoxia. Nat Neurosci, 2007. 10(6): pp. 754–62.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiaohai Wang
    • 1
  • Takahiro Takano
    • 1
  • Maiken Nedergaard
    • 1
  1. 1.Center for Aging and Developmental Biology, Department of NeurosurgeryUniversity of Rochester Medical CenterRochester

Personalised recommendations