Advertisement

Genotyping Methods to Analyse Polymorphisms in Toll-Like Receptors and Disease

  • Chiea-Chuen KhorEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 517)

Summary

It is now well accepted that a significant genetic component governs host susceptibility to different infectious diseases. As the Toll-like receptors (TLRs), together with their co-receptors and their downstream signalling partners, play such a crucial role in pathogen recognition and subsequent activation of the host immune response, any genetic mutation (polymorphism) that alters the protein structure and in so doing affects the ability of the TLRs or their co-receptors to bind to their associated pathogen-associated molecular patterns (PAMPs) will likely affect host susceptibility towards infection. Examination of the TLR signalling cascade suggests the existence of several bottlenecks or rate-limiting steps, obvious ones being at the level of the receptors, the adaptor proteins, TNF receptor-associated factor 6 (TRAF6), as well as at the IκB/NF-κB interaction point. Mutations to these downstream members might confer either resistance or increased susceptibility, depending on their nature. Indeed, it has been demonstrated time and again that natural variation in some of the molecules mentioned above does affect differential susceptibility to infectious diseases (e.g. invasive bacterial infections, tuberculosis, and malaria) specific to the binding spectrum of the TLRs involved.

Key words

Toll-like receptors Adaptor protein Genetic Polymorphism Infectious disease 

Notes

Acknowledgments

The author would like to thank Adrian Hill, Luke O’Neill, Stephen Chapman, and Fredrik Vannberg for their helpful suggestions, encouragement, and support.

References

  1. 1.
    Hill, A. V. (2006) Aspect of genetic susceptibility to human diseases. Annu. Rev. Genet. 40: 469–86PubMedCrossRefGoogle Scholar
  2. 2.
    Takeda, K., Kaisho, T., Akira, S. (2003) Toll-like receptors. Annu. Rev. Immunol. 21: 335–76.PubMedCrossRefGoogle Scholar
  3. 3.
    Jurinke, C., van den Boom, D., Cantor, C. R., Koster, H. (2002) Automated genotyping using the DNA MassArray technology. Methods Mol. Biol. 187: 179–92.PubMedGoogle Scholar
  4. 4.
    Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., 
Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B., Beutler, B. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 282: 2085–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., 
Ogawa, T.,Takeda, Y., Takeda, K., Akira, S. (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162: 3749–52PubMedGoogle Scholar
  6. 6.
    Smirnova, I., Mann, N., Dols, A., Derkx, H.H, Hibberd, M.L., Levin, M., Beutler, B. (2003) Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc. Natl. Acad. Sci. U. S. A. 100: 6075–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Hawn, T.R., Verbon, A., Lettinga, K.D., Zhao, L.P., Li, S.S., Laws, R.J., Skerrett, S. J., 
Beutler, B., Schroeder, L., Nachman, A., Ozinsky, A., Smith, K.D., Aderem, A. (2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J. Exp. Med. 198:1563–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Hawn, T.R., Verbon, A., Janer, M., Zhao, L.P., Beutler, B., Aderem, A. (2005) Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires’ disease. Proc. Natl. Acad. Sci. U. S. A. 102:2487–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Hoebe, K., Georgel, P., Rutschmann, S., Du, X., 
Mudd, S., Crozat, K., Sovath, S., Shamel, L., 
Hartung, T., Zahringer, U., Beutler, B. (2005) CD36 is a sensor of diacylglycerides. Nature 433: 523–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Khor, C.C., Chapman, S.J., Vannberg, F.O., Dunne, A., Murphy, C., Ling, E.Y., Frodsham, A.J., Walley, A.J., Kyrieleis, O., Khan, A.,
Aucan, C., Segal, S., Moore, C.E., Knox, K., Campbell, S.J., Lienhardt, C., Scott, A., Aaby, P., Sow, O.Y., Grignani, R.T., Sillah, J., Sirugo, G., Peshu, N., Williams, T.N., Maitland, K., Davies, R.J., Kwiatkowski, D.P., Day, N.P., Yala, D., Crook, D.W., Marsh, K., Berkley, J.A., O’Neill, L.A., Hill, A.V. (2007) A Mal functional variant is associated with protection against invasive pneumococcal disease,
bacteremia, malaria and tuberculosis. Nat. Genet. 39: 523–38PubMedCrossRefGoogle Scholar
  11. 11.
    Krishnegowda, G., Hajjar, A.M., Zhu, J., Douglass, E.J., Uematsu, S., Akira, S., Woods, A.S., Gowda, D.C. (2005) Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signalling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J. Biol. Chem. 280: 8606–16.PubMedCrossRefGoogle Scholar
  12. 12.
    Dunne, A., Ejdeback, M., Ludidi, P.L., O’Neill, L.A., Gay, N.J. (2003) Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors TIRAP and MyD88. J. Biol. Chem. 278: 41443–51PubMedCrossRefGoogle Scholar
  13. 13.
    Thoma-Uszynski, S., Stenger, S., Takeuchi, O., Ochoa, M.T., Engele, M., Sieling, P.A., Barnes, P.F., Rollinghoff, M., Bolcskei, P.L., Wagner, M., Akira, S., Norgard, M.V., Belisle, J.T., Godowski, P.J., Bloom, B.R., Modlin, R.L. (2001) Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291: 1544–7.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Section for Genetic Medicine, Brenner Centre for Molecular MedicineSingapore Institute for Clinical SciencesSingaporeSingapore

Personalised recommendations