A Genomic Approach to Yeast Chronological Aging

  • Christopher R. Burtner
  • Christopher J. Murakami
  • Matt Kaeberlein
Part of the Methods in Molecular Biology book series (MIMB, volume 548)


Yeast is a useful model organism to study the genetic and biochemical mechanisms of aging. Genomic studies of aging in yeast have been limited, however, by traditional methodologies that require a large investment of labor and resources. In this chapter, we describe a newly-developed method for quantitatively measuring the chronological life span of each strain contained in the yeast ORF deletion collection. Our approach involves determining population survival by monitoring outgrowth kinetics using a Bioscreen C MBR shaker/incubator/plate reader. This method has accuracy comparable to traditional assays, while allowing for higher throughput and decreased variability in measurement.

Key words

Longevity Aging Chronological life span, Yeast Bioscreen Stationary phase 



The development of the method described here was supported by a pilot project grant to MK from the University of Washington Nathan Shock Center for Excellence in the Basic Biology of Aging Grant 5P30 AG013280. CRB is supported by National Institutes of Health Training Grant 5P30 AG013280.


  1. 1.
    Kaeberlein, M. (2006). In Handbook of models for human aging. (Conn, P. M., Ed.), Elsevier Press, Boston, pp. 109–120.CrossRefGoogle Scholar
  2. 2.
    Mortimer, R. K., and Johnston, J. R. (1959). Life span of individual yeast cells. Nature. 183, 1751–1752.PubMedCrossRefGoogle Scholar
  3. 3.
    Fabrizio, P., and Longo, V. D. (2003). The chronological life span of Saccharomyces cerevisiae. Aging Cell. 2, 73–81.PubMedCrossRefGoogle Scholar
  4. 4.
    Kaeberlein, M. (2006). Genome-wide approaches to understanding human ageing. Hum Genomics. 2, 422–428.PubMedGoogle Scholar
  5. 5.
    Jiang, J. C., Jaruga, E., Repnevskaya, M. V., and Jazwinski, S. M. (2000). An intervention resembling caloric restriction prolongs life span and retards aging in yeast. Faseb J. 14, 2135–2137.PubMedGoogle Scholar
  6. 6.
    Kaeberlein, M., Kirkland, K. T., Fields, S., and Kennedy, B. K. (2004). Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2, E296.PubMedCrossRefGoogle Scholar
  7. 7.
    Lin, S. J., Defossez, P. A., and Guarente, L. (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 289, 2126–2128.PubMedCrossRefGoogle Scholar
  8. 8.
    Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K., and Longo, V. D. (2005). Sir2 blocks extreme life-span extension. Cell. 123, 655–667.PubMedCrossRefGoogle Scholar
  9. 9.
    Smith Jr, D. L., McClure, J. M., Matecic, M., and Smith, J. S. (2007). Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell. 6, 649–62.CrossRefGoogle Scholar
  10. 10.
    Powers, R. W., 3rd, Kaeberlein, M., Caldwell, S. D., Kennedy, B. K., and Fields, S. (2006). Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 20, 174–184.PubMedCrossRefGoogle Scholar
  11. 11.
    Kaeberlein, M., Powers, R. W., 3rd, Steffen, K. K., Westman, E. A., Hu, D., Dang, N., Kerr, E. O., Kirkland, K. T., Fields, S., and Kennedy, B. K. (2005). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science. 310, 1193–1196.PubMedCrossRefGoogle Scholar
  12. 12.
    Kaeberlein, M., McVey, M., and Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580.PubMedCrossRefGoogle Scholar
  13. 13.
    Fabrizio, P., Liou, L. L., Moy, V. N., Diaspro, A., SelverstoneValentine, J., Gralla, E. B., and Longo, V. D. (2003). SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics. 163, 35–46.PubMedGoogle Scholar
  14. 14.
    Fabrizio, P., Pletcher, S. D., Minois, N., Vaupel, J. W., and Longo, V. D. (2004). Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett. 557, 136–142.PubMedCrossRefGoogle Scholar
  15. 15.
    Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M., and Longo, V. D. (2001). Regulation of longevity and stress resistance by Sch9 in yeast. Science. 292, 288–290.PubMedCrossRefGoogle Scholar
  16. 16.
    Kaeberlein, M., Burtner, C. R., and Kennedy, B. K. (2007). Recent developments in yeast aging. PLoS Genet. 3, e84.PubMedCrossRefGoogle Scholar
  17. 17.
    Kaeberlein, M., and Kennedy, B. K. (2005). Large-scale identification in yeast of conserved ageing genes. Mech Ageing Dev. 126, 17–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Malathi, K., Higaki, K., Tinkelenberg, A. H., Balderes, D. A., Almanzar-Paramio, D., Wilcox, L. J., Erdeniz, N., Redican, F., Padamsee, M., Liu, Y., Khan, S., Alcantara, F., Carstea, E. D., Morris, J. A., and Sturley, S. L. (2004). Mutagenesis of the putative sterol-sensing domain of yeast Niemann Pick C-related protein reveals a primordial role in subcellular sphingolipid distribution. J Cell Biol. 164, 547–556.PubMedCrossRefGoogle Scholar
  19. 19.
    Tsuchiya, M., Dang, N., Kerr, E. O., Hu, D., Steffen, K. K., Oakes, J. A., Kennedy, B. K., and Kaeberlein, M. (2006). Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell. 5, 505–514.PubMedCrossRefGoogle Scholar
  20. 20.
    Murakami, C. J., Burtner, C. R., Kennedy, B. K., and Kaeberlein, M. (2008). A method for high-throughput quantitative analysis of yeast chronological life span. J Gerontol A Biol Sci Med Sci. 63, 113–21.PubMedCrossRefGoogle Scholar
  21. 21.
    Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J. D., Bussey, H., Chu, A. M., Connelly, C., Davis, K., Dietrich, F., Dow, S. W., El Bakkoury, M., Foury, F., Friend, S. H., Gentalen, E., Giaever, G., Hegemann, J. H., Jones, T., Laub, M., Liao, H., Davis, R. W., and et al (1999). Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 285, 901–906.PubMedCrossRefGoogle Scholar
  22. 22.
    Fabrizio, P., Battistella, L., Vardavas, R., Gattazzo, C., Liou, L. L., Diaspro, A., Dossen, J. W., Gralla, E. B., and Longo, V. D. (2004). Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol. 166, 1055–1067.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Christopher R. Burtner
    • 1
  • Christopher J. Murakami
    • 1
  • Matt Kaeberlein
    • 1
  1. 1.Department of PathologyUniversity of WashingtonSeattleUSA

Personalised recommendations