Immune Properties of Mesenchymal Stem Cells

  • Panagiota A. Sotiropoulou
  • Michael Papamichail
Part of the Methods in Molecular Biology™ book series (MIMB, volume 407)


Mesenchymal stem cells (MSCs) are multipotent progenitor cells isolated by various relatively easily accessible tissues, such as bone marrow and cord blood. MSCs gained attention because of their ease for in vitro expansion together with their multilineage potential. More recently, in vitro and in vivo immunosuppressive properties have been ascribed to them, as they are able to modulate the function of all major immune cell populations, thus impeding immune responses. The underlying mechanisms of their differentiation and function are not thoroughly understood, but still they represent important candidates for tissue regeneration and manipulation of the immune response in graft rejection, graft versus host disease, and autoimmune disorders. Characteristics and immunogenic profile of MSCs, their interface with immune system and their potential use as immunosuppressive elements in cellular therapeutic protocols are reviewed in this chapter.

Key Words

Mesenchymal stem cells Immune system Immune suppression GVHD Autoimmunity Cancer 


  1. 1.
    Conheim, J. (1867) Ueber Entzundung und Eiterung. Pathol. Anat. Physiol. Klin. Med. 40, 1–79.CrossRefGoogle Scholar
  2. 2.
    Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F. and Keiliss-Borok, I. V. (1974) Stromal cells responsible for transferring the micro- environment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17: 331–340.CrossRefPubMedGoogle Scholar
  3. 3.
    Deng, W., Obrocka, M., Fischer, I. and Prockop, D. J. (2001) In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem. Biophys. Res. Commun. 282: 148–152.CrossRefPubMedGoogle Scholar
  4. 4.
    Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J. and Kessler, P. D. (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105: 93–98.CrossRefPubMedGoogle Scholar
  5. 5.
    Lee, K. D., Kuo, T. K., Whang-Peng, J., Chung, Y. F., Lin, C. T., Chou, S. H., Chen, J. R., Chen, Y. P. and Lee, O. K. (2004) In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40 1275–1284.CrossRefPubMedGoogle Scholar
  6. 6.
    Dezava, M., Ishikawa, H., Itokazu, Y., Yoshihara, T., Hoshino, M., Takeda, S., Ide, C. and Nabeshima, Y. (2005) Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309, 314–317.CrossRefGoogle Scholar
  7. 7.
    Kuznetsov, S. A., Mankani, M. H., Gronthos, S., Satomura, K., Bianco, P. and Gehron-Robey, P. (2001) Circulating skeletal stem cells. J. Cell Biol. 153: 1133–1139.CrossRefPubMedGoogle Scholar
  8. 8.
    Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., Blake, J., Schwager, C., Eckstein, V., Ansorge, W. and Ho, A. D. (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33: 1402–1416.CrossRefPubMedGoogle Scholar
  9. 9.
    Horwitz, E. M., Le Blanc, K., Dominici, M., Mueller, I, Slaper-Cortenbach, I., Marini, F. C., Deans, R. J., Krause, D. S. and Keating A. (2005) Clarification of the nomenclature for MSC. The International Society for Cellular Therapy position statement. Cytotherapy 7, 393–395.CrossRefPubMedGoogle Scholar
  10. 10.
    Haynesworth, S. E., Baber, M. A. and Caplan, A. I. (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal Abs. Bone 13: 69–80.CrossRefPubMedGoogle Scholar
  11. 11.
    Barry, F., Boynton, R., Murphy, M., Haynesworth, S. and Zaia, J. (2001) The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem. Biophys. Res. Commun. 289: 519–524.CrossRefPubMedGoogle Scholar
  12. 12.
    Cognet, P. A. and Minguell, J. J. (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J. Cell. Physiol. 181: 67–73.CrossRefGoogle Scholar
  13. 13.
    Majumdar, M. K., Keane-Moore, M., Buyaner, D., Hardy, W. B., Moorman, M. A., McIntosh K. R. and Mosca, J. D. (2002) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J. Biomed. Sci. 10, 228–241.CrossRefGoogle Scholar
  14. 14.
    Wynn, R. F., Hart, C. A., Corradi-Perini, C., O’Neil, L., Evans, C. A., Wraith, J. E., Fairbairn, L. J. and Bellantuono, I. (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104: 2643–2645.CrossRefPubMedGoogle Scholar
  15. 15.
    Le Blanc, K. (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5: 485–489.CrossRefPubMedGoogle Scholar
  16. 16.
    Potian, J. A., Aviv, H., Ponzio, N. M., Harrison J. S. and Rameshwar P. (2003) Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigen and recall antigens. J. Immunol. 171, 3426–3434.PubMedGoogle Scholar
  17. 17.
    Krampera, M., Glennie, S., Dyson, J., Scott, D., Laylor. R., Simpson, E. and Dazzi, F. (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101: 3722–3729.CrossRefPubMedGoogle Scholar
  18. 18.
    Stagg, J., Pommey, S., Eliopoulos, N. and Galipeau J. (2006) Interferon-γ-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 107, 2570–2577.CrossRefPubMedGoogle Scholar
  19. 19.
    Bruder, S. P., Jaiswal, N. and Haynesworth, S. E. (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell. Biochem. 64, 278–294.CrossRefPubMedGoogle Scholar
  20. 20.
    Haynesworth, S. E., Baber, M. A. and Caplan, A. I. (1996) Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1α. J. Cell. Physiol. 166: 585–592.CrossRefPubMedGoogle Scholar
  21. 21.
    Majumdar, M. K., Thiede M. A., Mosca, J. D., Moorman. M. and Gerson, S. L. (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J. Cell. Physiol. 176: 57–66.CrossRefPubMedGoogle Scholar
  22. 22.
    Kim, D. H., Yoo, K. H., Choi, K. S., Choi, J., Choi, S. Y., Yang S. E., Yang, Y. S., Im, H. J., Kim, K. H., Jung, H. L., Sung, K. W. and Koo, H. H. (2005) Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell. Cytokine 31: 119–126.CrossRefPubMedGoogle Scholar
  23. 23.
    Beyth, S., Borovsky, Z., Mevorach, D., Liebergall, M., Gazit, Z., Aslan, H., Galun, E. and Rachmilewitz, J. (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105: 2214–2219.CrossRefPubMedGoogle Scholar
  24. 24.
    Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., Grisanti, S. and Gianni, A. M. (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99: 3838–3843.CrossRefPubMedGoogle Scholar
  25. 25.
    Klyushnekova, E., Mosca, J. D., Zernetkina, V., Majumdar, M. K., Beggs, K. J., Simonetti, D. W., Deans, R. J. and McIntosh, K. R. (2005) T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J. Biomed. Sci. 12: 47–57.CrossRefGoogle Scholar
  26. 26.
    Rasmusson, I., Rindgen, O., Sundberg, B. and Le Blanc, K. (2005) Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp. Cell Res. 305: 33–41.CrossRefPubMedGoogle Scholar
  27. 27.
    Meisel, R., Zibert, A., Laryea, M., Gobel, U., Daubener, W. and Dilloo, D. (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine-2, 3-dioxygenase-mediated tryptophan degradation. Blood 103: 4619–4621.CrossRefPubMedGoogle Scholar
  28. 28.
    Plumas, J., Chaperot, L., Richard, M. J., Molens, J. P., Bensa, J. C. and Favrot, M. C. (2005) Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia 19: 1597–1604.CrossRefPubMedGoogle Scholar
  29. 29.
    Bartholomew, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., Hardy, W., Devine, S., Ucker, D., Deans, R., Moseley, A. and Hoffman, R. (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30: 42–48.CrossRefPubMedGoogle Scholar
  30. 30.
    Tse, W. T., Pendleton, J. D., Beyer, W. M,. Egalka, M. C. and Gionan, E. C. (2003) Suppression of allogeneic T-cell proliferation by human bone marrow stromal cells: implications in transplantation. Transplantation 75: 389–397.CrossRefPubMedGoogle Scholar
  31. 31.
    Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., Noel, D. and Jorgensen, C. (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102: 3837–3844.CrossRefPubMedGoogle Scholar
  32. 32.
    Rasmusson, I., Rindgen, O., Sundberg, B. and Le Blanc, K. (2003) Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 27: 1208–1213.CrossRefGoogle Scholar
  33. 33.
    Le Blanc, K., Tammik, L., Sundberg, B., Haynesworth, S. E. and Ringden, O. (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol. 57: 11–20.CrossRefPubMedGoogle Scholar
  34. 34.
    Le Blanc, K., Rasmusson, I., Gotherstrom, C., Seidel, C., Sundberg, B., Sundin, M., Rosendahl, K., Tammik, C. and Ringden, O. (2004) Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand. J. Immunol. 60: 307–315.CrossRefPubMedGoogle Scholar
  35. 35.
    Aggarwal, S. and Pittenger, M. F. (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815–1822.CrossRefPubMedGoogle Scholar
  36. 36.
    Groh, M. E., Maitra, B., Szekely, E. and Koc, O. (2005) Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp. Hematol. 33, 928–934.CrossRefPubMedGoogle Scholar
  37. 37.
    Augello, A., Tasso, R., Negrini, S. M., Amateis, A., Indiveri, F., Cancedda, R. and Pannesi, G. (2005) Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur. J. Immunol. 35, 1482–1490.CrossRefPubMedGoogle Scholar
  38. 38.
    Maccario, R., Podesta, M., Moretta, A., Cometa, A., Comoli, P., Montagna, D., Daudt, L., Idatici, A., Piaggio, G., Pozzi, S., Frassoni, F. and Locatelli, F. (2005) Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica 90: 516–525.PubMedGoogle Scholar
  39. 39.
    Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W. F. and Dazzi, F. (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105: 2821–2827.CrossRefPubMedGoogle Scholar
  40. 40.
    Krampera, M., Cosmi, L., Angeli, R., Pasini, A., Liotta, F., Andreini, A., Santarlasci, V., Mazzinghi, B., Pizzolo, G., Vinante, F., Romagnani, P., Maggi, E., Romagnani, S. and Annunziato, F. (2006) Role of IFN-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24: 386–398.CrossRefPubMedGoogle Scholar
  41. 41.
    Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y.J., Pulendran, B. and Palucka, K. (2000) Immunobiology of dendritic cells. Annu. Rev. Immunol. 18: 767–811.CrossRefPubMedGoogle Scholar
  42. 42.
    Rutella, S., Danese, S. and Leone, G. (2006) Tolerogenic dendritic cells. Cytokine modulation comes of age. Blood 108, 1435–1440.CrossRefPubMedGoogle Scholar
  43. 43.
    Steinman, R. M., Pack, M. and Inaba, K. (1997) Dendritic cells in the T-cell areas of lymphoid organs. Immunol. Rev. 156, 25–37.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang, W., Ge, W., Li, C., You, S., Liao, L., Han, Q., Deng, W. and Zhao, R. C. H. (2004) Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev. 13, 263–271.CrossRefPubMedGoogle Scholar
  45. 45.
    Jiang, X. X., Zhang, Y., Liu, B., Zhang, S. X., Wu, Y., Yu, X. D. and Mao, N. (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105: 4120–4126.CrossRefPubMedGoogle Scholar
  46. 46.
    Chan, J. L., Tang, K. C., Patel, A. P., Bonilla, L. M., Pierobon, N., Ponzio, N. M. and Rameshwar, P. (2006) Antigen presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-γ. Blood 107, 4817–4824.CrossRefPubMedGoogle Scholar
  47. 47.
    Ollila, J. and Vihinen, M. (2005) B cells. Int. J. Biochem. Cell Biol. 37: 518–523.CrossRefPubMedGoogle Scholar
  48. 48.
    Deng, W., Han, Q., Liao, L., You, S., Deng, H. and Zhao, R. C. H. (2005) Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol. 24: 458–463.CrossRefPubMedGoogle Scholar
  49. 49.
    Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., Risso, M., Gualandi, F., Mancardi, G. L., Pistoia, V. and Ucceli, A. (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107: 367–372.CrossRefPubMedGoogle Scholar
  50. 50.
    Papamichail, M., Perez, S. A., Gritzapis, A. D. and Baxevanis, C. N. (2004) Natural killer lymphocytes: biology, development, and function. Cancer Immunol. Immunother. 53: 176–186.CrossRefPubMedGoogle Scholar
  51. 51.
    Poggi, A., Prevosto, C., Massaro, A. M., Negrini, S., Urbani, S., Pierri, I., Saccardi, R., Gobbi, M. and Zocchi, M. R. (2005) Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering: role of NKp30 and NKG2D receptors. J. Immunol. 175: 6352–6360.PubMedGoogle Scholar
  52. 52.
    Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevanis, C. N. and Papamichail. M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24: 74–85.CrossRefPubMedGoogle Scholar
  53. 53.
    Spaggiari, G. M., Capobianco, A., Beccheti, S., Mingari, M. C. and Moretta, L. (2006) Mesenchymal stem cell-natural killer cell interactions; evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 107: 1484–1490.CrossRefPubMedGoogle Scholar
  54. 54.
    Le Blanc, K., Tammik, C., Rosendahl, K,. Zetterberg, E. and Ringden, O. (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 31: 890–896.CrossRefPubMedGoogle Scholar
  55. 55.
    Maitra, B., Szekely, E., Gjini, K., Laughlin, M. J., Dennis, J., Haynesworth, S. E. and Koc, O. N. (2004) Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant. 33, 597–604.CrossRefPubMedGoogle Scholar
  56. 56.
    Liu, H., Kemeny, D. M., Heng, B. C., Ouyang, H. W., Melendez, A. J. and Cao, T. (2006) The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. J. Immunol. 176: 2864–2871.PubMedGoogle Scholar
  57. 57.
    Horwitz, E. M., Gordon, P. L., Koo, W. K., Marx, J. C., Neel, M. D., McNall, R. Y., Muul, L. and Hofmann, T. (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc. Natl. Acad. Sci. U.S.A. 99: 8932–8937.CrossRefPubMedGoogle Scholar
  58. 58.
    Koc, O. N., Day, J., Nieder, M., Gerson, S. L., Lazarus, H. M. and Krivit, W. (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant. 30, 215–222.CrossRefPubMedGoogle Scholar
  59. 59.
    Saito, T., Kuang, J. Q., Bittira, B., Al-Khaldi, A. and Chiu, R. C. (2002) Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Am. Thorac. Surg. 74: 19–24.CrossRefGoogle Scholar
  60. 60.
    Devine, S. M., Cobbs, C., Jennings, M., Bartholomew, A. and Hoffman, R. (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood. 101: 2999–3001.CrossRefPubMedGoogle Scholar
  61. 61.
    Le Blanc, K., Rasmusson, I., Sundberg, B., Gotherstrom, C., Hassan, M., Uzunel, M. and Ringden, O. (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363: 1439–1441.CrossRefPubMedGoogle Scholar
  62. 62.
    Lazarus, H. M., Koc, O. N., Devine, S. M., Curtin, P., Maziarz, R.T., Holland, H. K., Shpall, E. J., McCarthy, P., Atkinson, K., Cooper, B. W., Gerson, S. L., Laughlin, M. J., Loberiza, F. R. Jr., Moseley, A. B. and Bacigalupo, A. (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol. Blood marrow Transplant. 11: 389–398.CrossRefPubMedGoogle Scholar
  63. 63.
    Rasulov, M. F., Vasil’chenkov, A. V., Onishchenko, N. A., Krasheninnikov, M. E., Kravchenko, V. I., Gorshenin, T. L., Pidtsan, R. E. and Potapov, I. V. (2005) First experience in the use of bone marrow mesenchymal stem cells for the treatment of a patient with deep skin burns. Bull. Exp. Biol. Med. 1, 141–144.CrossRefGoogle Scholar
  64. 64.
    Eliopoulos, N., Stagg, J., Lejeune, L., Pommey, S. and Galipeau, J. (2005) Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II- mismatched recipient mice. Blood 106: 4057–4065.CrossRefPubMedGoogle Scholar
  65. 65.
    Nauta, A. J., Westerhuis, G., Kruisselbrink, A. B., Lurvink, E. G., Willemze, R. and Fibbe, W. E. (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a non-myeloablative setting. Blood 108: 2114–2120.CrossRefPubMedGoogle Scholar
  66. 66.
    Grinnemo, K. H., Mansson, A., Dellgren, G., Klingberg, D., Wardell, E., Drvota, V., Tammik, C., Holgersson, J., Ringden, O., Sylven, C. and Le Blanc, K. (2004) Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infracted rat myocardium. J. Thorac. Cardiovasc. Surg. 127: 1293–1300.CrossRefPubMedGoogle Scholar
  67. 67.
    Miura, M., Miura, Y., Padila-Nash, H. M., Molinolo, A. A., Fu, B., Patel, V., Seo, B. M., Sonoyama, W., Zheng, J. J., Baker, C. C., Chen, W., Ried, T. and Shi, S. (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24: 1095–1103.CrossRefPubMedGoogle Scholar
  68. 68.
    Chung, N. G., Jeong, D. C., Park, S. J., Choi, B. O., Cho, B., Kim, H. K., Chun, C. S., Won, J. H. and Ham, C. W. (2004) Cotransplantation of marrow stromal cells may prevent lethal graft-versus-host disease in major histocompatibility complex mismatched murine hematopoietic stem cell transplantation. Int. J. Hematol. 80: 370–376.CrossRefPubMedGoogle Scholar
  69. 69.
    Kim, D. W., Chung, Y.J., Kim, T. G., Kim, Y. L. and Oh, I. H. (2004) Cotransplantation of third-party mesenchymal stromal cells can alleviate single-donor predominance and increase engraftment from double cord transplantation. Blood 103, 1941–1948.CrossRefPubMedGoogle Scholar
  70. 70.
    Lee, S. T., Jang, J. H., Cheong, J. W., Kim, J. S., Meamg, H. Y., Hahn, J. S., Ko, Y. W. and Min, Y. H. (2002) Treatment of high-risk acute myelogenous leukemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched leukocyte antigen haplotype. Br. J. Haematol. 118, 1128–1131.CrossRefPubMedGoogle Scholar
  71. 71.
    Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., Giunti, D., Ceravolo, A., Cazzanti, F., Frassoni, F., Mancardi, G. and Ucceli, A. (2005) Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T cell anergy. Blood 106: 1755–1761.CrossRefPubMedGoogle Scholar
  72. 72.
    Zhang, J., Li, Y., Chen, J., Cui, Y., Lu, M., Elias, S. B., Mitchell, J. B., Hammill, L., Vanguri, P. and Chopp, M. (2005) Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp. Neurol. 195, 16–26.CrossRefPubMedGoogle Scholar
  73. 73.
    Ishida, T., Inaba, M., Hisha, H., Sugiura, K., Adachi, Y., Nagata, N., Ogawa, R., Good, R. A. and Ikehara, S. (1994) Requirement of donor-derived stromal cells in the bone marrow for successful allogeneic bone marrow transplantation. Complete prevention of recurrence of autoimmune diseases in MRL/MP-Ipr/Ipr mice by transplantation of bone marrow plus bones (stromal cells) from the same donor. J. Immunol. 152: 3119–3127.PubMedGoogle Scholar
  74. 74.
    Djouad, F., Fritz, V., Apparailly, F., Louis-Plence, P., Bony, C., Sany, J., Jorgensen, C. and Noel, D. (2005) Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor αin collagen-induced arthritis. Arthritis Rheum. 52: 1595–1603.CrossRefPubMedGoogle Scholar
  75. 75.
    Hung, S.-C., Deng, W.-P., Yang, W. K., Liu, R.-S., Lee, C.-C., Su, T.-C., Lin, R.-J., Yang, D.-M., Chang, C.-W., Chen, W.-H., Wei, H.-J. and Gelovani, J. G. (2005) Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin. Cancer Res. 11: 7749–7756.CrossRefPubMedGoogle Scholar
  76. 76.
    Zhu, W., Xu, W., Jiang, R., Qian, H., Chen, M., Hu, J., Cao, W., Han, C. and Chen, Y. (2006) Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp. Mol. Pathol. 80: 267–274.CrossRefPubMedGoogle Scholar
  77. 77.
    Khakoo, A. Y., Pati, S., Anderson, S. A., Reid, W., Elshal, M. F., Rovira, I. I., Nguygen, A. T., Malide, D., Combs, C. A., Hall, G., Zhang, J., Raffeld, M., Rogers, T. B., Stetler-Stevenson, W., Frank, J. A., Reitz, M. and Finkel, T. (2006) Human mesenchymal stem cell exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J. Exp. Med. 203: 1235–1247.CrossRefPubMedGoogle Scholar
  78. 78.
    Studeny, M., Marini, F. C., Champlin, R. E., Zompetta, C., Fidler, I. J. and Andreeff, M. (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res. 62: 3603–3608.PubMedGoogle Scholar
  79. 79.
    Studeny, M., Marini, F. C., Dembinski, J. L., Zompetta, C., Cabreira-Hansen, M., Bekele, B. N., Champlin, R. E. and Andreef, M. (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl. Cancer Inst. 96: 1693–1603.Google Scholar
  80. 80.
    Nakamura, K., Ito, Y., Kawano, Y., Kurozumi, K., Kobune, M., Tsuda, H., Bizen, A., Monmou, O., Nutsu, Y. and Hamada, H. (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther. 11: 1155–1164.CrossRefPubMedGoogle Scholar
  81. 81.
    Rubio, D., Garcia-Castro, J., Martin, M. C., de la Fuente, R., Cigudosa, J. C., Lloyd, A. C. and Bernad, A. (2005) Spontaneous human adult stem cell transformation. Cancer Res. 65, 3035–3039.PubMedGoogle Scholar
  82. 82.
    Serakinci, N., Guldberg, P., Burns, J. S., Abdallah, B., Schrodder, H., Jensen, T. and Kassem, M. (2004) Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene 23: 5095–5098.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2007

Authors and Affiliations

  • Panagiota A. Sotiropoulou
    • 1
  • Michael Papamichail
    • 1
  1. 1.Cancer Immunology and Immunotherapy CenterSaint Savas HospitalAthensGreece

Personalised recommendations