PCR Primer Design pp 35-59

Part of the Methods in Molecular Biology™ book series (MIMB, volume 402)

OLIGO 7 Primer Analysis Software

  • Wojciech Rychlik

Summary

OLIGO performs a range of functions for researches in PCR and related technologies such as PCR and sequencing primer selection, hybridization probe design, inverse and real-time PCR, analysis of false priming using a unique priming efficiency (PE) algorithm, design of consensus and multiplex, nested primers and degenerate primers, reverse translation, and restriction enzyme analysis and prediction; based on a protein sequence, oligonucleotide database allows fully automatic multiplexing, primer secondary structure analysis, and more. OLIGO allows for sequence file batch processing that is essential for automation. This chapter describes the major functions of OLIGO version 7 software.

Key Words

OLIGO primer analysis software probe analysis TaqMan probes design software molecular beacons design software siRNA design software open reading frames analysis gene design PCR primer analysis real-time PCR primer design PCR multiplexing ligase chain reaction batch processing 

References

  1. 1.
    Rychlik, W. (1993) Selection of primers for polymerase chain reaction, in Methods in Molecular Biology, Vol. 15: PCR Protocols: Current Methods and Applications, (B.A. White Ed.), Humana Press Inc., Totowa, NJ. pp. 31–40.Google Scholar
  2. 2.
    SantaLucia, J., Jr. (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95, 1460–1465.PubMedCrossRefGoogle Scholar
  3. 3.
    Xia, T., SantaLucia, J., Jr., Burkard, M.E., Kierzek, R., Schroeder, S.J., Jiao, X., Cox, C., and Turner, D.H. (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 37, 14719–14735.PubMedCrossRefGoogle Scholar
  4. 4.
    Allawi, H.T., and SantaLucia, J., Jr. (1997) Thermodynamics and NMR of internal G · T mismatches in DNA. Biochemistry 36, 10581–10594.PubMedCrossRefGoogle Scholar
  5. 5.
    Allawi, H.T., and SantaLucia, J., Jr. (1998) Nearest neighbor thermodynamic parameters for internal G · A mismatches in DNA. Biochemistry 37, 2170–2179.PubMedCrossRefGoogle Scholar
  6. 6.
    Allawi, H.T., and SantaLucia, J., Jr. (1998) Nearest-neighbor thermodynamics of internal A · C mismatches in DNA: sequence dependence and pH effects. Biochemistry 37, 9435–9444.PubMedCrossRefGoogle Scholar
  7. 7.
    Allawi, H.T., and SantaLucia, J., Jr. (1998) Thermodynamics of internal C · T mismatches in DNA. Nucleic Acids Res 26, 2694–2701.PubMedCrossRefGoogle Scholar
  8. 8.
    Peyret, N., Allawi, H.T., and SantaLucia, J., Jr. (1999) Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A·AC·CG·GT·T mismatches. Biochemistry 38, 3468–3477.PubMedCrossRefGoogle Scholar
  9. 9.
    Bommarito, S., Peyret, N., and SantaLucia, J., Jr. (2000) Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res 28, 1929–1934.PubMedCrossRefGoogle Scholar
  10. 10.
    Lipman, D.J., and Pearson, W.R. (1985) Rapid and sensitive protein similarity searches. Science 227, 1435–1441.PubMedCrossRefGoogle Scholar
  11. 11.
    Steffens, D.L., Sutter, S.L., and Roemer, S.C. (1993) An alternate universal forward primer for improved automated DNA sequencing of M13. BioTechniques 15, 580–582.PubMedGoogle Scholar
  12. 12.
    Meinkoth, J., and Wahl, G. (1984) Hybridization of nucleic acids immobilized on solid supports. Anal Biochem 138, 267–284.PubMedCrossRefGoogle Scholar
  13. 13.
    Khvorova, A., Reynolds, A., and Jayasena, S.D. (2003) Functional siRNA and miRNAs exhibit strand bias.Cell 115, 209–216.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2007

Authors and Affiliations

  • Wojciech Rychlik
    • 1
  1. 1.Molecular Biology Insights, Inc.CascadeUSA

Personalised recommendations