Meiosis pp 27-33 | Cite as

Modulating and Targeting Meiotic Double-Strand Breaks in Saccharomyces cerevisiae

Part of the Methods in Molecular Biology book series (MIMB, volume 557)


Meiotic recombination is initiated by DNA double-strand breaks (DSBs) formed by the evolutionary conserved Spo11 protein. Along the S. cerevisiae chromosomes, the DSB sites are not evenly distributed and the cleavage frequencies vary 10–100-fold from site to site. Herein are reviewed the methods used in budding yeast to modulate locally and globally the native DSB frequencies, including a powerful method to target Spo11-dependent meiotic DSB in novel chromosomal regions. These methods serve to investigate the control and the mechanism of recombination initiation and modify the natural distribution of meiotic recombination.

Key words

meiosis recombination initiation Spo11 


  1. 1.
    Keeney, S. (2001) Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52, 1–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Hunter, N. (2007) in “Homologous recombination” (Aguilera, A., Rothstein R., Eds.), Springer-Verlag, Heidelberg.Google Scholar
  3. 3.
    Zenvirth, D., Arbel, T., Sherman, A., Goldway, M., Klein, S., and Simchen, G. (1992) Multiple sites for double-strand breaks in whole meiotic chromosomes of Saccharomyces cerevisiae. EMBO J. 11, 3441–7.PubMedGoogle Scholar
  4. 4.
    Baudat, F., and Nicolas, A. (1997) Clustering of meiotic double-strand breaks on yeast chromosome III. Proc. Natl. Acad. Sci. USA 94, 5213–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Gerton, J. L., DeRisi, J., Shroff, R., Lichten, M., Brown, P. O., and Petes, T. D. (2000) Inaugural article: global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97, 11383–90.PubMedCrossRefGoogle Scholar
  6. 6.
    Borde, V., Lin, W., Novikov, E., Petrini, J. H., Lichten, M., and Nicolas, A. (2004) Association of Mre11p with double-strand break sites during yeast meiosis. Mol. Cell 13, 389–401.PubMedCrossRefGoogle Scholar
  7. 7.
    Robine, N., Uematsu, N., Amiot, F., Gidrol, X., Barillot, E., Nicolas, A., and Borde, V. (2007) Genome-wide redistribution of meiotic double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 1868–80.PubMedCrossRefGoogle Scholar
  8. 8.
    Lichten, M., and Goldman, A. S. (1995) Meiotic recombination hotspots. Annu. Rev. Genet. 29, 423–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Smith, K. N., and Nicolas, A. (1998) Recombination at work for meiosis. Curr. Opin. Genet. Dev. 8, 200–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Petes, T. D. (2001) Meiotic recombination hot spots and cold spots. Nat. Rev. Genet. 2, 360–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Martini, E., Diaz, R. L., Hunter, N., and Keeney, S. (2006) Crossover homeostasis in yeast meiosis. Cell 126, 285–95.PubMedCrossRefGoogle Scholar
  12. 12.
    Peciña, A., Smith, K. N., Mézard, C., Murakami, H., Ohta, K., and Nicolas, A. (2002) Targeted stimulation of meiotic recombination. Cell 111, 173–84.PubMedCrossRefGoogle Scholar
  13. 13.
    Nicolas, A., Treco, D., Schultes, N. P., and Szostak, J. W. (1989) An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature 338, 35–9.Google Scholar
  14. 14.
    Fan, Q., Xu, F., and Petes, T. D. (1995) Meiosis-specific double-strand DNA breaks at the HIS4 recombination hot spot in the yeast Saccharomyces cerevisiae: control in cis and trans. Mol. Cell. Biol. 15, 1679–88.PubMedGoogle Scholar
  15. 15.
    Haring, S. J., Halley, G. R., Jones, A. J., and Malone, R. E. (2003) Properties of natural double-strand-break sites at a recombination hotspot in Saccharomyces cerevisiae. Genetics 165, 101–14.PubMedGoogle Scholar
  16. 16.
    de Massy, B., and Nicolas, A. (1993) The control in cis of the position and the amount of the ARG4 meiotic double-strand break of Saccharomyces cerevisiae. EMBO J. 12, 1459–66.PubMedGoogle Scholar
  17. 17.
    Rocco, V., de Massy, B., and Nicolas, A. (1992) The Saccharomyces cerevisiae ARG4 initiator of meiotic gene conversion and its associated double-strand DNA breaks can be inhibited by transcriptional interference. Proc. Natl. Acad. Sci. USA 89, 12068–72.PubMedCrossRefGoogle Scholar
  18. 18.
    Nicolas, A. (1998) Relationship between transcription and initiation of meiotic recombination: toward chromatin accessibility. Proc. Natl. Acad. Sci. USA 95, 87–9.PubMedCrossRefGoogle Scholar
  19. 19.
    White, M. A., Dominska, M., and Petes, T. D. (1993) Transcription factors are required for the meiotic recombination hotspot at the HIS4 locus in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90, 6621–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Xu, F., and Petes, T. D. (1996) Fine-structure mapping of meiosis-specific double-strand DNA breaks at a recombination hotspot associated with an insertion of telomeric sequences upstream of the HIS4 locus in yeast. Genetics 143, 1115–25.PubMedGoogle Scholar
  21. 21.
    Kirkpatrick, D. T., Wang, Y. H., Dominska, M., Griffith, J. D., and Petes, T. D. (1999) Control of meiotic recombination and gene expression in yeast by a simple repetitive DNA sequence that excludes nucleosomes. Mol. Cell. Biol. 19, 7661–71.PubMedGoogle Scholar
  22. 22.
    Wu, T. C., and Lichten, M. (1995) Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae. Genetics 140, 55–66.PubMedGoogle Scholar
  23. 23.
    Borde, V., Wu, T. C., and Lichten, M. (1999) Use of a recombination reporter insert to define meiotic recombination domains on chromosome III of Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 4832–42.PubMedGoogle Scholar
  24. 24.
    Fan, Q. Q., Xu, F., White, M. A., and Petes, T. D. (1997) Competition between adjacent meiotic recombination hotspots in the yeast Saccharomyces cerevisiae. Genetics 145, 661–70.PubMedGoogle Scholar
  25. 25.
    Malone, R. E., and Esposito, R. E. (1981) Recombinationless meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 1, 891–901.PubMedGoogle Scholar
  26. 26.
    Smith, J., Bibikova, M., Whitby, F. G., Reddy, A. R., Chandrasegaran, S., and Carroll, D. (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28, 3361–9.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institut Curie, Centre de Recherche, UMR7147-CNRS, Université Pierre et Marie CurieParisFrance

Personalised recommendations