Advertisement

Xenopus Oocytes as a Heterologous Expression System for Studying Ion Channels with the Patch-Clamp Technique

  • Paolo Tammaro
  • Kenju Shimomura
  • Peter Proks
Part of the Methods in Molecular Biology book series (MIMB, volume 491)

Summary

Oocytes from the Xenopus laevis represent one of the most widely used expression systems for functional characterization of ion channels. Their large size facilitates both injection of heterologous cRNA and subsequent electrophysiological recordings of ion channel currents. Furthermore, Xenopus oocytes translate cRNA very efficiently, resulting in the generation of a large number of ion channels in the plasma membrane. In this chapter, we outline methods for oocyte preparation and maintenance and describe procedures for patch-clamping of oocytes, with a special focus on the macropatch technique. We discuss some common problems associated with patch-clamping of oocytes and their use as an expression system for ion channels.

Key words

Xenopus laevis Oocytes Ion channels Patch-clamp Macropatch Inside-out Outside-out Patch-cramming Heterologous expression 

Notes

Acknowledgments

We wish to thank Drs. Oscar Moran and Tim Craig for their critical reading of the manuscript and helpful comments. P.T. holds a Junior Research fellowship at Wolfson College, Oxford.

References

  1. 1.
    Sive, H. L., Grainger, R. M., and Harland, R. M. (eds.) (2000) Early development of Xenopus Laevis: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  2. 2.
    Bodart, J. F. and Duesbery, N. S. (2006) Xenopus tropicalis oocytes: more than just a beautiful genome. Methods Mol. Biol. 322,43–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Gurdon, J. B., Lane, C. D., Woodland, H.R., and Marbaix, G. (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233, 177–182.CrossRefPubMedGoogle Scholar
  4. 4.
    Wagner, C. A., Friedrich, B., Setiawan, I., Lang, F., and Broer, S. (2000) The use of Xenopus laevis oocytes for the functionalcharacterization of heterologously expressed membrane proteins. Cell Physiol. Biochem.10, 1–12.CrossRefPubMedGoogle Scholar
  5. 5.
    Wu, M. and Gerhart, J. (1991) Raising Xenopus in the laboratory. Methods Cell Biol. 36, 3–18.CrossRefPubMedGoogle Scholar
  6. 6.
    Ashcroft, F. M. (2006) From molecule to malady. Nature 440, 440–447.CrossRefPubMedGoogle Scholar
  7. 7.
    Stuhmer, W. (1998) Electrophysiologic recordings from Xenopus oocytes. Methods Enzymol. 293, 280–300.CrossRefPubMedGoogle Scholar
  8. 8.
    Hilgemann, D. W. and Lu, C. C. (1998) Giant membrane patches: improvements and applications. Methods Enzymol. 293, 267–280.CrossRefPubMedGoogle Scholar
  9. 9.
    Sakmann, B. and Neher, E. (eds.) (1995)Single-channel recording. Plenum, NewYork.Google Scholar
  10. 10.
    Ogden, D. C. (ed.) (1994) Microelectrode techniques. The Plymouth Workshop Handbook, Cambridge.Google Scholar
  11. 11.
    Dumont, J. N. (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals.J. Morphol. 136, 153–179.CrossRefPubMedGoogle Scholar
  12. 12.
    Oron, Y. and Dascal, N. (1992) Regulation of intracellular calcium activity in Xenopusoocytes. Methods Enzymol. 207, 381–390.CrossRefPubMedGoogle Scholar
  13. 13.
    Barish, M. E. (1983) A transient calcium-dependent chloride current in the immature Xenopus oocyte. J. Physiol. 342, 309–325.PubMedGoogle Scholar
  14. 14.
    Hartzell, C., Putzier, I., and Arreola, J. (2005) Calcium-activated chloride channels. Annu. Rev. Physiol. 67, 719–758.CrossRefPubMedGoogle Scholar
  15. 15.
    Krafte, D. S. and Lester, H. A. (1992) Use of stage II–III Xenopus oocytes to study voltage-dependent ion channels. Methods Enzymol. 207, 339–345.CrossRefPubMedGoogle Scholar
  16. 16.
    Leonard, J. P. and Kelso, S. R. (1990) Apparent desensitization of NMDA responses in Xenopus oocytes involves calcium-dependent chloride current. Neuron 4, 53–60.CrossRefPubMedGoogle Scholar
  17. 17.
    Rae, J. L. and Levis, R. A. (1992) Glass technology for patch clamp electrodes. Methods Enzymol. 207, 66–92.CrossRefPubMedGoogle Scholar
  18. 18.
    Sakmann, B. and Neher, E. (1995) Geometric parameters of pipettes and membrane patches, in Single-channel recording, 2nd edition (Sakmann, B. and Neher, E., eds.), Plenum, New York, pp. 637–650.Google Scholar
  19. 19.
    Penner, R. (1995) A practical guide to patch clamping, in Single-channel recording, 2nd edition (Sakmann, B. and Neher, E., eds.), Plenum, New York, pp. 3–30.Google Scholar
  20. 20.
    Moody-Corbett, F. and Fry, M. (2002)Recordings from macropatches, in Patch-clamp analysis, advanced techniques (Walz, W., Boulton, A. A., and Baker, G. B., eds.), Humana, Totowa, NJ, pp. 287–299.CrossRefGoogle Scholar
  21. 21.
    Heinemann, S. H. 1995. Guide to data acquisition and analysis, in Single-channel recording, 2nd edition (Sakmann, B. and Neher, E., eds.), Plenum, New York, pp.53–90.Google Scholar
  22. 22.
    Tang, X. D. and Hoshi, T. (1999) Rundown of the hyperpolarization-activated KAT1channel involves slowing of the opening transitions regulated by phosphorylation.Biophys. J. 76, 3089–3098.CrossRefPubMedGoogle Scholar
  23. 23.
    Krauter, T., Ruppersberg, J. P., and Baukrow-itz, T. (2001) Phospholipids as modulators of KATP channels: distinct mechanisms for control of sensitivity to sulphonylureas, K+ channel openers, and ATP. Mol. Pharmacol.59, 1086–1093.PubMedGoogle Scholar
  24. 24.
    Beck, E. J. and Covarrubias, M. (2001) Kv4 channels exhibit modulation of closed-state inactivation in inside-out patches. Biophys. J.81, 867–883.CrossRefPubMedGoogle Scholar
  25. 25.
    Costantin, J. L., Qin, N., Waxham, M. N., Birnbaumer, L., and Stefani, E. (1999)Complete reversal of run-down in rabbit cardiac Ca2+ channels by patch-cramming in Xenopus oocytes; partial reversal by protein kinase A. Pflugers Arch. 437, 888–894.CrossRefPubMedGoogle Scholar
  26. 26.
    Markovich, D. and Regeer, R. R. (1999) Expression of membrane transporters in cane toad Bufo marinus oocytes. J. Exp.Biol. 202, 2217–2223.PubMedGoogle Scholar
  27. 27.
    Vargas, R. A., Botero, L., Lagos, L., and Camacho, M. (2004) Bufo marinus oocytes as a model for ion channel protein expression and functional characterization for electrophysiological studies. Cell Physiol.Biochem. 14, 197–202.CrossRefPubMedGoogle Scholar
  28. 28.
    Sumikawa, K., Houghton, M., Emtage, J. S., Richards, B. M., and Barnard, E. A.(1981) Active multi-subunit ACh receptor assembled by translation of heterologous mRNA in Xenopus oocytes. Nature 292,862–864.CrossRefPubMedGoogle Scholar
  29. 29.
    Miledi, R., Parker, I., and Sumikawa, K.(1982) Synthesis of chick brain GABA receptors by frog oocytes. Proc. R. Soc. Lond.B Biol. Sci. 216, 509–515.CrossRefPubMedGoogle Scholar
  30. 30.
    Sanguinetti, M. C., Curran, M. E., Zou, A., Shen, J., Spector, P. S., Atkinson, D. L., and Keating, M. T. (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384,80–83.CrossRefPubMedGoogle Scholar
  31. 31.
    Shcherbatko, A., Ono, F., Mandel, G., and Brehm, P. (1999) Voltage-dependent sodium channel function is regulated through membrane mechanics. Biophys. J.77, 1945–1959.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2008, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paolo Tammaro
    • 1
  • Kenju Shimomura
    • 1
  • Peter Proks
    • 1
  1. 1.Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordUK

Personalised recommendations