Identification of Functionally Important Residues/Domains in Membrane Proteins Using an Evolutionary Approach Coupled with Systematic Mutational Analysis

  • Lavanya Rajagopalan
  • Fred A. Pereira
  • Olivier Lichtarge
  • William E. Brownell
Part of the Methods in Molecular Biology™ book series (MIMB, volume 493)

Abstract

Structure-function studies of membrane proteins present a unique challenge to researchers due to the numerous technical difficulties associated with their expression, purification and structural characterization. In the absence of structural information, rational identification of putative functionally important residues/regions is difficult. Phylogenetic relationships could provide valuable information about the functional significance of a particular residue or region of a membrane protein. Evolutionary Trace (ET) analysis is a method developed to utilize this phylogenetic information to predict functional sites in proteins. In this method, residues are ranked according to conservation or divergence through evolution, based on the hypothesis that mutations at key positions should coincide with functional evolutionary divergences. This information can be used as the basis for a systematic mutational analysis of identified residues, leading to the identification of functionally important residues and/or domains in membrane proteins, in the absence of structural information apart from the primary amino acid sequence. This approach is potentially useful in the context of the auditory system, as several key processes in audition involve the action of membrane proteins, many of which are novel and not well characterized structurally or functionally to date.

Keywords

Phylogenetic membrane protein structure-function site-directed mutagenesis membrane expression 

References

  1. 1.
    Lichtarge, O., Bourne, H. R., and Cohen, F. E. (1996) An evolutionary trace method defines binding surfaces common to protein families. J. Mol. Biol. 257, 342–358.CrossRefPubMedGoogle Scholar
  2. 2.
    Lichtarge, O., and Sowa, M. E. (2002) Evolutionary predictions of binding surfaces and interactions. Curr. Opin. Struct. Biol. 12, 21–27.CrossRefPubMedGoogle Scholar
  3. 3.
    Madabushi, S., Yao, H., Marsh, M., Kristensen, D. M., Philippi, A., Sowa, M. E., and Lichtarge, O. (2002) Structural clusters of evolutionary trace residues are statistically significant and common in proteins. J. Mol. Biol. 8, 139–154.CrossRefGoogle Scholar
  4. 4.
    Yao, H., Kristensen, D. M., Mihalek, I., Sowa, M. E., Shaw, C., Kimmel, M., Kavraki, L., and Lichtarge, O. (2003) An accurate, sensitive, and scalable method to identify functional sites in protein structures. J Mol Biol. 326, 255–261.CrossRefPubMedGoogle Scholar
  5. 5.
    Sowa, M. E., He, W., Slep, K. C., Kercher, M. A., Lichtarge, O., and Wensel, T. G. (2001) Prediction and confirmation of a site critical for effector regulation of RGS domain activity. Nat. Struct. Biol. 8, 234–237.CrossRefPubMedGoogle Scholar
  6. 6.
    Madabushi, S., Gross, A. K., Philippi, A., Meng, E. C., Wensel, T. G., and Lichtarge, O. (2004) Evolutionary trace of G protein-coupled receptors reveals clusters of residues that determine global and class-specific functions. J. Biol. Chem. 279, 8126–8132.CrossRefPubMedGoogle Scholar
  7. 7.
    Ribes-Zamora, A., Mihalek, I., Lichtarge, O., and Bertuch, A. A. (2007) Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions. Nat. Struct. Mol. Biol. 14, 301–307.CrossRefPubMedGoogle Scholar
  8. 8.
    Shenoy, S. K., Drake, M. T., Nelson, C. D., Houtz, D. A., Xiao, K., Madabushi, S., Reiter, E., Premont, R. T., Lichtarge, O., and Lefkowitz, R. J. (2006) beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J. Biol. Chem. 281, 1261–1273.CrossRefPubMedGoogle Scholar
  9. 9.
    Rajagopalan, L., Patel, N., Madabushi, S., Goddard, J. A., Anjan, V., Lin, F., Shope, C., Farrell, B., Lichtarge, O., Davidson, A. L., Brownell, W. E., and Pereira, F. A. (2006) Essential helix interactions in the anion transporter domain of prestin revealed by evolutionary trace analysis. J. Neurosci. 26, 12727–12734.CrossRefPubMedGoogle Scholar
  10. 10.
    Mihalek, I., Res, I., and Lichtarge, O. (2004) A family of evolution-entropy hybrid methods for ranking protein residues by importance. J. Mol. Biol. 336, 1265–1282.CrossRefPubMedGoogle Scholar
  11. 11.
    Morgan, D. H., Kristensen, D. M., Mittelman, D., and Lichtarge, O. (2006) ET viewer: an application for predicting and visualizing functional sites in protein structures. Bioinformatics 22, 2049–2050.CrossRefPubMedGoogle Scholar
  12. 12.
    Mihalek, I., Res, I., and Lichtarge, O. (2006) Evolutionary trace report_maker: a new type of service for comparative analysis of proteins. Bioinformatics 22, 1656–1657.CrossRefPubMedGoogle Scholar
  13. 13.
    Mihalek, I., Res, I., Yao, H., and Lichtarge, O. (2003) Combining inference from evolution and geometric probability in protein structure evaluation. J. Mol. Biol. 331, 263–279.CrossRefPubMedGoogle Scholar
  14. 14.
    Geva, A., Lassere, T. B., Lichtarge, O., Pollitt, S. K., and Baranski, T. J. (2000) Genetic Mapping of the Human C5a Receptor. Identification Of Transmembrane Amino Acids Critical For Receptor Function. J. Biol. Chem. 275, 35393–35401.CrossRefPubMedGoogle Scholar
  15. 15.
    Lichtarge, O., Yamamoto, K. R., and Cohen, F. E. (1997) Identification of functional surfaces of the zinc binding domains of intracellular receptors. J. Mol. Biol. 274, 325–327.CrossRefPubMedGoogle Scholar
  16. 16.
    Sowa, M. E., He, W., Wensel, T. G., and Lichtarge, O. (2000) A regulator of G protein signaling interaction surface linked to effector specificity. Proc. Natl. Acad. Sci. U.S.A. 97, 1483–1488.CrossRefPubMedGoogle Scholar
  17. 17.
    Landgraf, R., Xenarios, I., and Eisenberg, D. (2001) Three-dimensional cluster analysis identifies interfaces and functional residue clusters in proteins. J. Mol. Biol. 307, 1487–1502.CrossRefPubMedGoogle Scholar
  18. 18.
    Armon, A., Graur, D., and Ben-Tal, N. (2001) ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J. Mol. Biol. 307, 447–463.CrossRefPubMedGoogle Scholar
  19. 19.
    Hannenhalli, S. S., and Russell, R. B. (2000) Analysis and prediction of functional sub-types from protein sequence alignments. J. Mol. Biol. 303, 61–76.CrossRefPubMedGoogle Scholar
  20. 20.
    Yang, Z., and Nielsen, R. (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19, 908–917.PubMedGoogle Scholar
  21. 21.
    Franchini, L. F., and Elgoyhen, A. B. (2006) Adaptive evolution in mammalian proteins involved in cochlear outer hair cell electromotility. Mol. Phylogenet. Evol. 41, 622–635.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lavanya Rajagopalan
    • 1
  • Fred A. Pereira
    • 1
  • Olivier Lichtarge
    • 1
  • William E. Brownell
    • 1
  1. 1.Bobby R. Alford Department of Otolaryngology – HNSBaylor College of MedicineHoustonUSA

Personalised recommendations