Mitochondrial DNA pp 59-72

Part of the Methods in Molecular Biology™ book series (MIMB, volume 554)

Functional Analysis of Mutant Mitochondrial DNA Polymerase Proteins Involved in Human Disease

  • Sherine S. L. Chan
  • William C. Copeland

Abstract

DNA polymerase γ (pol γ) is the only DNA polymerase within the mitochondrion and is thus essential for replication and repair of mtDNA. POLG, the gene encoding the catalytic subunit of pol γ, is a major locus for a wide spectrum of mitochondrial diseases with more than 100 known disease mutations. Thus, we need to understand how and why pol γ defects lead to disease. By using an extensive array of methods, we are developing a clearer understanding of how defects in pol γ contribute to disease. Furthermore, crucial knowledge concerning the role of pol γ in mtDNA replication and repair can be acquired. Here we present the protocols to characterize mutant DNA pol γ proteins, namely, assays for processive DNA synthesis, exonuclease activity, DNA binding, subunit interaction, and protein stability.

Key words

DNA polymerase γ mitochondrial DNA polymerase DNA replication DNA repair mitochondrial disease enzyme assays POLG POLG2 

References

  1. 1.
    Naviaux, R. K. (2004). Developing a systematic approach to the diagnosis and classification of mitochondrial disease. Mitochondrion 4, 351–361.CrossRefPubMedGoogle Scholar
  2. 2.
    Dimauro, S. and Davidzon, G. (2005). Mitochondrial DNA and disease. Ann Med 37, 222–32.CrossRefPubMedGoogle Scholar
  3. 3.
    Yakubovshaya, E., Chen, Z., Carrodeguas, J. A., Kisker, C. and Bogenhagen, D. F. (2006). Functional human mitochondrial DNA polymerase γ forms a heterotrimer. J Biol Chem 281, 374–382.CrossRefGoogle Scholar
  4. 4.
    Graziewicz, M. A., Longley, M. J. and Copeland, W. C. (2006). DNA polymerase gamma in Mitochondrial DNA Replication and Repair. Chem Rev 106, 383–405.CrossRefPubMedGoogle Scholar
  5. 5.
    Longley, M. J., Clark, S., Yu Wai Man, C., Hudson, G., Durham, S. E., Taylor, R. W., Nightingale, S., Turnbull, D. M., Copeland, W. C. and Chinnery, P. F. (2006). Mutant POLG2 Disrupts DNA Polymerase γ Subunits and Causes Progressive External Ophthalmoplegia. Am J Hum Genet 78, 1026–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Longley, M. J., Ropp, P. A., Lim, S. E. and Copeland, W. C. (1998). Characterization of the native and recombinant catalytic subunit of human DNA polymerase γ: identification of residues critical for exonuclease activity and dideoxynucleotide sensitivity. Biochemistry 37, 10529–39.CrossRefPubMedGoogle Scholar
  7. 7.
    Ponamarev, M. V., Longley, M. J., Nguyen, D., Kunkel, T. A. and Copeland, W. C. (2002). Active Site Mutation in DNA Polymerase γ Associated with Progressive External Ophthalmoplegia Causes Error-prone DNA Synthesis. J Biol Chem 277, 15225–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Graziewicz, M. A., Longley, M. J., Bienstock, R. J., Zeviani, M. and Copeland, W. C. (2004). Structure-function defects of human mitochondrial DNA polymerase in autosomal dominant progressive external ophthalmoplegia. Nat Struct Mol Biol 11, 770–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Chan, S. S. L., Longley, M. J., Naviaux, R. K. and Copeland, W. C. (2005). Mono-allelic POLG expression resulting from nonsense-mediated decay and alternative splicing in a patient with Alpers syndrome. DNA Repair 4, 1381–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Luoma, P. T., Luo, N., Loscher, W. N., Farr, C. L., Horvath, R., Wanschitz, J., Kiechl, S., Kaguni, L. S. and Suomalainen, A. (2005). Functional defects due to spacer-region mutations of human mitochondrial DNA polymerase in a family with an ataxia-myopathy syndrome. Hum Mol Genet 14, 1907–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Chan, S. S. L., Longley, M. J. and Copeland, W. C. (2005). The common A467T mutation in the human mitochondrial DNA polymerase (POLG) compromises catalytic efficiency and interaction with the accessory subunit. J Biol Chem 280, 31341–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Chan, S. S. L., Longley, M. J. and Copeland, W. C. (2006). Modulation of the W748S mutation in DNA polymerase γ by the E1143G polymorphism in mitochondrial disorders. Hum Mol Genet 15, 3473–83.CrossRefPubMedGoogle Scholar
  13. 13.
    Yamanaka, H., Gatanaga, H., Kosalaraksa, P., Matsuoka-Aizawa, S., Takahashi, T., Kimura, S. and Oka, S. (2007). Novel Mutation of Human DNA Polymerase γ Associated with Mitochondrial Toxicity Induced by Anti-HIV Treatment. J Infect Dis 195, 1419–25.CrossRefPubMedGoogle Scholar
  14. 14.
    Lim, S. E. and Copeland, W. C. (2001). Differential incorporation and removal of antiviral deoxynucleotides by human DNA polymerase γ. J Biol Chem 276, 23616–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Longley, M. J. and Copeland, W. C. (2002). Purification, separation and identification of the catalytic and accessory subunits of the human mitochondrial DNA polymerase. In Mitochondrial DNA: Methods and Protocols (Copeland, W. C., ed.), Vol. 197, pp. 245–258. Humana Press, Totowa, New Jersey.Google Scholar
  16. 16.
    Lim, S. E., Longley, M. J. and Copeland, W. C. (1999). The mitochondrial p55 accessory subunit of human DNA polymerase γ enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem 274, 38197–203.CrossRefPubMedGoogle Scholar
  17. 17.
    Lim, S. E., Ponamarev, M. V., Longley, M. J. and Copeland, W. C. (2003). Structural Determinants in Human DNA Polymerase γ Account for Mitochondrial Toxicity from Nucleoside Analogs. J Mol Biol 329, 45–57.CrossRefPubMedGoogle Scholar
  18. 18.
    DeRose, E. F., Kirby, T. W., Mueller, G. A., Bebenek, K., Garcia-Diaz, M., Blanco, L., Kunkel, T. A. and London, R. E. (2003). Solution structure of the lyase domain of human DNA polymerase λ. Biochemistry 42, 9564–74.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Sherine S. L. Chan
    • 1
  • William C. Copeland
    • 1
  1. 1.Mitochondrial DNA Replication Group, Laboratory of Molecular Genetics, National Institute of Environmental Health SciencesNational Institutes of HealthUSA

Personalised recommendations