Reactive Oxygen Species Production by Mitochondria

  • Adrian J. Lambert
  • Martin D. Brand
Part of the Methods in Molecular Biology™ book series (MIMB, volume 554)


Oxidative damage to cellular macromolecules is believed to underlie the development of many pathological states and aging. The agents responsible for this damage are generally thought to be reactive oxygen species, such as superoxide, hydrogen peroxide, and hydroxyl radical. The main source of reactive species production within most cells is the mitochondria. Within the mitochondria the primary reactive oxygen species produced is superoxide, most of which is converted to hydrogen peroxide by the action of superoxide dismutase. The production of superoxide by mitochondria has been localized to several enzymes of the electron transport chain, including Complexes I and III and glycerol-3-phosphate dehydrogenase. In this chapter the current consensus view of sites, rates, mechanisms, and topology of superoxide production by mitochondria is described. A brief overview of the methods for measuring reactive oxygen species production in isolated mitochondria and cells is also presented.

Key words

Superoxide hydrogen peroxide Complex I Complex III succinate rotenone antimycin myxothiazol 


  1. 1.
    Harman, D. (1992) Free radical theory of aging. Mutat. Res. 275, 257–266.PubMedGoogle Scholar
  2. 2.
    Droge, W. (2002) Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95.PubMedGoogle Scholar
  3. 3.
    McCord, J. M. and Fridovich, I. (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055.PubMedGoogle Scholar
  4. 4.
    Lebovitz, R. M., Zhang, H., Vogel, H., Cartwright, J., Jr., Dionne, L., Lu, N., Huang, S. and Matzuk, M. M. (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc. Natl. Acad. Sci. USA 93, 9782–9787.CrossRefPubMedGoogle Scholar
  5. 5.
    Li, Y., Huang, T. T., Carlson, E. J., Melov, S., Ursell, P. C., Olson, J. L., Noble, L. J., Yoshimura, M. P., Berger, C., Chan, P. H., Wallace, D. C. and Epstein, C. J. (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11, 376–381.CrossRefPubMedGoogle Scholar
  6. 6.
    Halliwell, B. and Gutteridge, J. M. C. (1999) Free radicals in biology and medicine, Oxford University Press Inc, NYGoogle Scholar
  7. 7.
    Tarpey, M. M., Wink, D. A. and Grisham, M. B. (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R431–444.Google Scholar
  8. 8.
    Gardner, P. R. (2002) Aconitase: sensitive target and measure of superoxide. Meth. Enzymol. 349, 9–23.CrossRefPubMedGoogle Scholar
  9. 9.
    Talbot, D. A. and Brand, M. D. (2005) Uncoupling protein 3 protects aconitase against inactivation in isolated skeletal muscle mitochondria. Biochim. Biophys. Acta 1709, 150–156.PubMedGoogle Scholar
  10. 10.
    Miwa, S. and Brand, M. D. (2005) The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria. Biochim. Biophys. Acta 1709, 214–219.CrossRefGoogle Scholar
  11. 11.
    St-Pierre, J., Buckingham, J. A., Roebuck, S. J. and Brand, M. D. (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 277, 44784–44790.CrossRefPubMedGoogle Scholar
  12. 12.
    Benov, L., Sztejnberg, L. and Fridovich, I. (1998) Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic. Biol. Med. 25, 826–831.CrossRefPubMedGoogle Scholar
  13. 13.
    Budd, S. L., Castilho, R. F. and Nicholls, D. G. (1997) Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells. FEBS Lett. 415, 21–24.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhao, H., Joseph, J., Fales, H. M., Sokoloski, E. A., Levine, R. L., Vasquez-Vivar, J. and Kalyanaraman, B. (2005) Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc. Natl. Acad. Sci. USA 102, 5727–5732.CrossRefPubMedGoogle Scholar
  15. 15.
    Robinson, K. M., Janes, M. S., Pehar, M., Monette, J. S., Ross, M. F., Hagen, T. M., Murphy, M. P. and Beckman, J. S. (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc. Natl. Acad. Sci. USA 103, 15038–15043.CrossRefPubMedGoogle Scholar
  16. 16.
    Negre-Salvayre, A., Auge, N., Duval, C., Robbesyn, F., Thiers, J. C., Nazzal, D., Benoist, H. and Salvayre, R (2002) Detection of intracellular reactive oxygen species in cultured cells using fluorescent probes. Meth. Enzymol. 352, 62–71.CrossRefPubMedGoogle Scholar
  17. 17.
    O'Malley, Y. Q., Reszka, K. J. and Britigan, B. E. (2004) Direct oxidation of 2',7'-dichlorodihydrofluorescein by pyocyanin and other redox-active compounds independent of reactive oxygen species production. Free Radic. Biol. Med. 36, 90–100.CrossRefPubMedGoogle Scholar
  18. 18.
    Rota, C., Chignell, C. F. and Mason, R. P. (1999) Evidence for free radical formation during the oxidation of 2'-7'- dichlorofluorescin to the fluorescent dye 2'-7'-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic. Biol. Med. 27, 873–881.CrossRefPubMedGoogle Scholar
  19. 19.
    Hinkle, P. C., Butow, R. A., Racker, E. and Chance, B. (1967) Partial resolution of the enzymes catalyzing oxidative phosphorylation. XV. Reverse electron transfer in the flavin-cytochrome beta region of the respiratory chain of beef heart submitochondrial particles. J. Biol. Chem. 242, 5169–5173.PubMedGoogle Scholar
  20. 20.
    Jensen, P. K. (1966) Antimycin-insensitive oxidation of succinate and reduced nicotinamide-adenine dinucleotide in electron-transport particles. I. pH dependency and hydrogen peroxide formation. Biochim. Biophys. Acta 122, 157–166.PubMedGoogle Scholar
  21. 21.
    Loschen, G., Flohe, L. and Chance, B. (1971) Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett. 18, 261–264.CrossRefPubMedGoogle Scholar
  22. 22.
    Andreyev, A. Y., Kushnareva, Y. E. and Starkov, A. A. (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70, 200–214.CrossRefGoogle Scholar
  23. 23.
    Brand, M. D., Affourtit, C., Esteves, T. C., Green, K., Lambert, A. J., Miwa, S., Pakay, J. L. and Parker, N. (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic. Biol. Med. 37, 755–767.CrossRefPubMedGoogle Scholar
  24. 24.
    Jezek, P. and Hlavata, L. (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int. J. Biochem. Cell Biol. 37, 2478–2503.CrossRefPubMedGoogle Scholar
  25. 25.
    Raha, S. and Robinson, B. H. (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25, 502–508.CrossRefPubMedGoogle Scholar
  26. 26.
    Turrens, J. F. (2003) Mitochondrial formation of reactive oxygen species. J. Physiol. 552, 335–344.CrossRefPubMedGoogle Scholar
  27. 27.
    Brandt, U. (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu. Rev. Biochem. 75, 69–92.CrossRefPubMedGoogle Scholar
  28. 28.
    Hansford, R. G., Hogue, B. A. and Mildaziene, V. (1997) Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J. Bioenerg. Biomembr. 29, 89–95.CrossRefPubMedGoogle Scholar
  29. 29.
    Kushnareva, Y., Murphy, A. N. and Andreyev, A. (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem. J. 368, 545–553.CrossRefPubMedGoogle Scholar
  30. 30.
    Lambert, A. J. and Brand, M. D. (2004) Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem. J. 382, 511–517.CrossRefPubMedGoogle Scholar
  31. 31.
    Liu, Y., Fiskum, G. and Schubert, D. (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80, 780–787.CrossRefPubMedGoogle Scholar
  32. 32.
    Votyakova, T. V. and Reynolds, I. J. (2001) ΔΨm-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J. Neurochem. 79, 266–277.CrossRefPubMedGoogle Scholar
  33. 33.
    Ohnishi, S. T., Ohnishi, T., Muranaka, S., Fujita, H., Kimura, H., Uemura, K., Yoshida, K. and Utsumi, K. (2005) A possible site of superoxide generation in the complex I segment of rat heart mitochondria. J. Bioenerg. Biomembr. 37, 1–15.CrossRefPubMedGoogle Scholar
  34. 34.
    Gyulkhandanyan, A. V. and Pennefather, P. S. (2004) Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress. J. Neurochem. 90, 405–421.CrossRefPubMedGoogle Scholar
  35. 35.
    Miwa, S., St-Pierre, J., Partridge, L. and Brand, M. D. (2003) Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic. Biol. Med. 35, 938–948.CrossRefGoogle Scholar
  36. 36.
    Kwong, L. K. and Sohal, R. S. (1998) Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch. Biochem. Biophys. 350, 118–126.CrossRefPubMedGoogle Scholar
  37. 37.
    Lambert, A. J., Boysen, H. M., Buckingham, J. A., Yang, T., Podlutsky, A., Austad, S. N., Kunz, T. H., Buffenstein, R. and Brand, M. D. (2007) Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 6, 607–618.Google Scholar
  38. 38.
    Li, Y. and Trush, M. A. (1998) Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem. Biophys. Res. Commun. 253, 295–299.CrossRefPubMedGoogle Scholar
  39. 39.
    Parthasarathi, K., Ichimura, H., Quadri, S., Issekutz, A. and Bhattacharya, J. (2002) Mitochondrial reactive oxygen species regulate spatial profile of proinflammatory responses in lung venular capillaries. J. Immunol. 169, 7078–7086.PubMedGoogle Scholar
  40. 40.
    Schuchmann, S. and Heinemann, U. (2000) Increased mitochondrial superoxide generation in neurons from trisomy 16 mice: a model of Down's syndrome. Free Radic. Biol. Med. 28, 235–250.CrossRefPubMedGoogle Scholar
  41. 41.
    Vrablic, A. S., Albright, C. D., Craciunescu, C. N., Salganik, R. I. and Zeisel, S. H. (2001) Altered mitochondrial function and overgeneration of reactive oxygen species precede the induction of apoptosis by 1-O-octadecyl-2-methyl-rac-glycero-3-phosphocholine in p53-defective hepatocytes. FASEB J. 15, 1739–1744.CrossRefPubMedGoogle Scholar
  42. 42.
    Barrientos, A. and Moraes, C. T. (1999) Titrating the effects of mitochondrial complex I impairment in the cell physiology. J. Biol. Chem. 274, 16188–16197.CrossRefPubMedGoogle Scholar
  43. 43.
    Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, J. A. and Robinson, J. P. (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278, 8516–8525.CrossRefPubMedGoogle Scholar
  44. 44.
    Nakamura, K., Bindokas, V. P., Kowlessur, D., Elas, M., Milstien, S., Marks, J. D., Halpern, H. J. and Kang, U. J. (2001) Tetrahydrobiopterin scavenges superoxide in dopaminergic neurons. J. Biol. Chem. 276, 34402–34407.CrossRefPubMedGoogle Scholar
  45. 45.
    Siraki, A. G., Pourahmad, J., Chan, T. S., Khan, S. and O'Brien, P. J. (2002) Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes. Free Radic. Biol. Med. 32, 2–10.CrossRefPubMedGoogle Scholar
  46. 46.
    Kudin, A. P., Bimpong-Buta, N. Y., Vielhaber, S., Elger, C. E. and Kunz, W. S. (2004) Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 279, 4127–4135.CrossRefPubMedGoogle Scholar
  47. 47.
    Lambert, A. J. and Brand, M. D. (2004) Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (Complex I). J. Biol. Chem. 279, 39414–39420.CrossRefPubMedGoogle Scholar
  48. 48.
    Barja, G. and Herrero, A. (1998) Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon. J. Bioenerg. Biomembr. 30, 235–243.CrossRefPubMedGoogle Scholar
  49. 49.
    Herrero, A. and Barja, G. (1997) Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon. Mech. Ageing Dev. 98, 95–111.CrossRefPubMedGoogle Scholar
  50. 50.
    Herrero, A. and Barja, G. (1998) H2O2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved. Mech. Ageing Dev. 103, 133–146.CrossRefPubMedGoogle Scholar
  51. 51.
    Korshunov, S. S., Skulachev, V. P. and Starkov, A. A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416, 15–18.CrossRefPubMedGoogle Scholar
  52. 52.
    Liu, S. S. (1997) Generating, partitioning, targeting and functioning of superoxide in mitochondria. Biosci. Rep. 17, 259–272.CrossRefPubMedGoogle Scholar
  53. 53.
    Brand, M. D. (2000) Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp. Gerontol. 35, 811–820.CrossRefPubMedGoogle Scholar
  54. 54.
    Speakman, J. R., Talbot, D. A., Selman, C., Snart, S., McLaren, J. S., Redman, P., Krol, E., Jackson, D. M., Johnson, M. S. and Brand, M. D. (2004) Uncoupled and surviving: individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell 3, 87–95.CrossRefPubMedGoogle Scholar
  55. 55.
    Kussmaul, L. and Hirst, J. (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci. USA 103, 7607–7612.CrossRefPubMedGoogle Scholar
  56. 56.
    Johnson, J. E., Jr., Choksi, K. and Widger, W. R. (2003) NADH-Ubiquinone oxidoreductase: substrate-dependent oxygen turnover to superoxide anion as a function of flavin mononucleotide. Mitochondrion 3, 97–110.CrossRefPubMedGoogle Scholar
  57. 57.
    Genova, M. L., Ventura, B., Giuliano, G., Bovina, C., Formiggini, G., Parenti Castelli, G. and Lenaz, G. (2001) The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett. 505, 364–368.CrossRefPubMedGoogle Scholar
  58. 58.
    Herrero, A. and Barja, G. (2000) Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria. J. Bioenerg. Biomembr. 32, 609–615.CrossRefPubMedGoogle Scholar
  59. 59.
    Muller, F. L., Liu, Y. and Van Remmen, H. (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 279, 49064–49073.CrossRefPubMedGoogle Scholar
  60. 60.
    Trumpower, B. L. (1990) The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc 1 complex. J. Biol. Chem. 265, 11409–11412.PubMedGoogle Scholar
  61. 61.
    Chen, Q., Vazquez, E. J., Moghaddas, S., Hoppel, C. L. and Lesnefsky, E. J. (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J. Biol. Chem. 278, 36027–36031.CrossRefPubMedGoogle Scholar
  62. 62.
    McLennan, H. R. and Degli Esposti, M. (2000) The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J. Bioenerg. Biomembr. 32, 153–162.CrossRefPubMedGoogle Scholar
  63. 63.
    Raha, S., McEachern, G. E., Myint, A. T. and Robinson, B. H. (2000) Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Free Radic. Biol. Med. 29, 170–180.CrossRefPubMedGoogle Scholar
  64. 64.
    Cape, J. L., Bowman, M. K. and Kramer, D. M. (2007) A semiquinone intermediate generated at the Qo site of the cytochrome bc1 complex: Importance for the Q-cycle and superoxide production. Proc. Natl. Acad. Sci. USA 104, 7887–7892.CrossRefPubMedGoogle Scholar
  65. 65.
    Turrens, J. F., Alexandre, A. and Lehninger, A. L. (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237, 408–414.CrossRefPubMedGoogle Scholar
  66. 66.
    Talbot, D. A., Lambert, A. J. and Brand, M. D. (2004) Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3. FEBS Lett. 556, 111–115.CrossRefPubMedGoogle Scholar
  67. 67.
    Han, D., Williams, E. and Cadenas, E. (2001) Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 353, 411–416.CrossRefPubMedGoogle Scholar
  68. 68.
    Rustin, P., Munnich, A. and Rotig, A. (2002) Succinate dehydrogenase and human diseases: new insights into a well-known enzyme. Eur. J. Hum. Genet. 10, 289–291.CrossRefPubMedGoogle Scholar
  69. 69.
    Senoo-Matsuda, N., Yasuda, K., Tsuda, M., Ohkubo, T., Yoshimura, S., Nakazawa, H., Hartman, P. S. and Ishii, N. (2001) A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans. J. Biol. Chem. 276, 41553–41558.CrossRefPubMedGoogle Scholar
  70. 70.
    Messner, K. R. and Imlay, J. A. (2002) Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J. Biol. Chem. 277, 42563–42571.CrossRefPubMedGoogle Scholar
  71. 71.
    Tretter, L., Takacs, K., Hegedus, V. and Adam-Vizi, V. (2007) Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria. J. Neurochem. 100, 650–663.CrossRefPubMedGoogle Scholar
  72. 72.
    Drahota, Z., Chowdhury, S. K., Floryk, D., Mracek, T., Wilhelm, J., Rauchova, H., Lenaz, G. and Houstek, J. (2002) Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. J. Bioenerg. Biomembr. 34, 105–113.CrossRefPubMedGoogle Scholar
  73. 73.
    Sekhar, B. S., Kurup, C. K. and Ramasarma, T. (1987) Generation of hydrogen peroxide by brown adipose tissue mitochondria. J. Bioenerg. Biomembr. 19, 397–407.CrossRefPubMedGoogle Scholar
  74. 74.
    Gazaryan, I. G., Krasnikov, B. F., Ashby, G. A., Thorneley, R. N., Kristal, B. S. and Brown, A. M. (2002) Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J. Biol. Chem. 277, 10064–10072.CrossRefPubMedGoogle Scholar
  75. 75.
    Starkov, A. A., Fiskum, G., Chinopoulos, C., Lorenzo, B. J., Browne, S. E., Patel, M. S. and Beal, M. F. (2004) Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J. Neurosci. 24, 7779–7788.CrossRefPubMedGoogle Scholar
  76. 76.
    Fang, J. and Beattie, D.S. (2003) External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide. Free Radic. Biol. Med. 34, 478–488.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Adrian J. Lambert
    • 1
  • Martin D. Brand
    • 2
  1. 1.MRC Dunn Human Nutrition UnitCambridgeUK
  2. 2.Buck Institute of AgingNovatoUSA

Personalised recommendations