Studying Bacterial Genome Dynamics Using Microarray-Based Comparative Genomic Hybridization

  • Eduardo N. Taboada
  • Christian C. Luebbert
  • John H.E. Nash
Part of the Methods In Molecular Biology™ book series (MIMB, volume 396)


Genome sequencing has revealed the remarkable amount of genetic diversity that can be encountered in bacterial genomes. In particular, the comparison of genome sequences from closely related strains has uncovered significant differences in gene content, hinting at the dynamic nature of bacterial genomes. The study of these genome dynamics is crucial to leveraging genomic information because the genome sequence of a single bacterial strain may not accurately represent the genome of the species.

The dynamic nature of bacterial genome content has required us to apply the concepts of comparative genomics (CG) at the species level. Although direct genome sequence comparisons are an ideal method of performing CG, one current constraint is the limited availability of multiple genome sequences from a given bacterial species. DNA microarray-based comparative genomic hybridization (MCGH), which can be used to determine the presence or absence of thousands of genes in a single hybridization experiment, provides a powerful alternative for determining genome content and has been successfully used to investigate the genome dynamics of a wide number of bacterial species. Although MCGH-based studies have already provided a new vista on bacterial genome diversity, original methods for MCGH have been limited by the absence of novel gene sequences included in the microarray. New applications of the MCGH platform not only promise to accelerate the pace of novel gene discovery but will also help provide an integrated microarray-based approach to the study of bacterial CG.

Key Words

DNA microarrays comparative genomics genomotyping genome content phylogenomics genome evolution bacteria 


  1. 1.
    Alm, R. A., Ling, L. S., Moir, D. T., et al. (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180.PubMedCrossRefGoogle Scholar
  2. 2.
    Perna, N. T., Plunkett, G., Burland, V., et al. (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533.PubMedCrossRefGoogle Scholar
  3. 3.
    Tettelin, H., Masignani, V., Cieslewicz, M. J., et al. (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc. Natl. Acad. Sci. USA 102, 13,950–13,955.CrossRefGoogle Scholar
  4. 4.
    Maione, D., Margarit, I., Rinaudo, C. D., et al. (2005) Identification of a universal Group B Streptococcus vaccine by multiple genome screen. Science 309, 148–150.PubMedCrossRefGoogle Scholar
  5. 5.
    Behr, M. A., Wilson, M. A., Gill, W. P., et al. (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284, 1520–1523.PubMedCrossRefGoogle Scholar
  6. 6.
    Salama, N., Guillemin, K., McDaniel, T. K., Sherlock, G., Tompkins, L., and Falkow, S. (2000) A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc. Natl. Acad. Sci. USA 97, 14,668–14,673.CrossRefGoogle Scholar
  7. 7.
    Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470.PubMedCrossRefGoogle Scholar
  8. 8.
    Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P. O., and Davis, R. W. (1996) Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA 93, 10,614–10,619.CrossRefGoogle Scholar
  9. 9.
    Kato-Maeda, M., Rhee, J. T., Gingeras, T. R., et al. (2001) Comparing genomes within the species Mycobacterium tuberculosis. Genome Res. 11, 547–554.PubMedCrossRefGoogle Scholar
  10. 10.
    Tsolaki, A. G., Hirsh, A. E., DeRiemer, K., et al. (2004) Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc. Natl. Acad. Sci. USA 101, 4865–4870.PubMedCrossRefGoogle Scholar
  11. 11.
    Hakenbeck, R., Balmelle, N., Weber, B., Gardes, C., Keck, W., and de Saizieu, A. (2001) Mosaic genes and mosaic chromosomes: intra- and interspecies genomic variation ofStreptococcus pneumoniae. Infect. Immun. 69, 2477–2486.Google Scholar
  12. 12.
    Wick, L. M., Qi, W., Lacher, D. W., and Whittam, T. S. (2005) Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7. J. Bacteriol. 187, 1783–1791.PubMedCrossRefGoogle Scholar
  13. 13.
    Yao, Y., Sturdevant, D. E., Villaruz, A., Xu, L., Gao, Q., and Otto, M. (2005) Factors characterizing Staphylococcus epidermidis invasiveness determined by comparative genomics. Infect. Immun. 73, 1856–1860.Google Scholar
  14. 14.
    Charbonnier, Y., Gettler, B., Francois, P., et al. (2005) A generic approach for the design of whole-genome oligoarrays, validated for genomotyping, deletion mapping and gene expression analysis on Staphylococcus aureus. BMC Genomics 6, 95.PubMedCrossRefGoogle Scholar
  15. 15.
    Wu, L., Thompson, D. K., Li, G., Hurt, R. A., Tiedje, J. M., and Zhou, J. (2001) Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol. 67, 5780–5790.PubMedCrossRefGoogle Scholar
  16. 16.
    Wilson, W. J., Strout, C. L., DeSantis, T. Z., Stilwell, J. L., Carrano, A. V., and Andersen, G. L. (2002) Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol. Cell. Probes 16, 119–127.PubMedCrossRefGoogle Scholar
  17. 17.
    Tiquia, S. M., Wu, L., Chong, S. C., et al. (2004) Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in environmental samples. Biotechniques 36, 664–670.PubMedGoogle Scholar
  18. 18.
    Daran-Lapujade, P., Daran, J. M., Kotter, P., Petit, T., Piper, M. D., and Pronk, J. T. (2003) Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays. FEMS Yeast Res. 4, 259–269.PubMedCrossRefGoogle Scholar
  19. 19.
    Rajashekara, G., Glasner, J. D., Glover, D. A., and Splitter, G. A. (2004) Comparative whole-genome hybridization reveals genomic islands in Brucella species. J. Bacteriol. 186, 5040–5051.PubMedCrossRefGoogle Scholar
  20. 20.
    Wong, C. W., Albert, T. J., Vega, V. B., et al. (2004) Tracking the evolution of the SARS coronavirus using high-throughput, high-density resequencing arrays. Genome Res. 14, 398–405.PubMedCrossRefGoogle Scholar
  21. 21.
    Davignon, L., Walter, E. A., Mueller, K. M., Barrozo, C. P., Stenger, D. A., and Lin, B. (2005) Use of resequencing oligonucleotide microarrays for identification of Streptococcus pyogenes and associated antibiotic resistance determinants. J. Clin. Microbiol. 43, 5690–5695.PubMedCrossRefGoogle Scholar
  22. 22.
    Hayward, R. E., Derisi, J. L., Alfadhli, S., Kaslow, D. C., Brown, P. O., and Rathod, P. K. (2000) Shotgun DNA microarrays and stage-specific gene expression in Plasmodium falciparum malaria. Mol. Microbiol. 35, 6–14.PubMedCrossRefGoogle Scholar
  23. 23.
    Dorrell, N., Mangan, J. A., Laing, K. G., et al. (2001) Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res. 11, 1706–1715.PubMedCrossRefGoogle Scholar
  24. 24.
    Call, D. R., Borucki, M. K., and Besser, T. E. (2003) Mixed-genome microarrays reveal multiple serotype and lineage-specific differences among strains of Listeria monocytogenes. J. Clin. Microbiol. 41, 632–639.PubMedCrossRefGoogle Scholar
  25. 25.
    Borucki, M. K., Kim, S. H., Call, D. R., Smole, S. C., and Pagotto, F. (2004) Selective discrimination of Listeria monocytogenes epidemic strains by a mixed-genome DNA microarray compared to discrimination by pulsed-field gel electrophoresis, ribotyping, and multilocus sequence typing. J. Clin. Microbiol. 42, 5270–5276.PubMedCrossRefGoogle Scholar
  26. 26.
    Samrakandi, M. M., Zhang, C., Zhang, M., et al. (2004) Genome diversity among regional populations of Francisella tularensis subspecies tularensis and Francisella tularensis subspecies holarctica isolated from the US. FEMS Microbiol. Lett. 237, 9–17.PubMedCrossRefGoogle Scholar
  27. 27.
    Poly, F., Threadgill, D., and Stintzi, A. (2004) Identification of Campylobacter jejuni ATCC 43431-specific genes by whole microbial genome comparisons. J. Bacteriol. 186, 4781–4795.PubMedCrossRefGoogle Scholar
  28. 28.
    Poly, F., Threadgill, D., and Stintzi, A. (2005) Genomic diversity in Campylobacter jejuni: identification of C. jejuni 81–176-specific genes. J. Clin. Microbiol. 43, 2330–2338.PubMedCrossRefGoogle Scholar
  29. 29.
    Porwollik, S., Santiviago, C. A., Cheng, P., Florea, L., and McClelland, M. (2005) Differences in gene content between Salmonella enterica serovar Enteritidis isolates and comparison to closely related serovars Gallinarum and Dublin. J. Bacteriol. 187, 6545–6555.PubMedCrossRefGoogle Scholar
  30. 30.
    Witney, A. A., Marsden, G. L., Holden, M. T., et al. (2005) Design, validation, and application of a seven-strain Staphylococcus aureus PCR product microarray for comparative genomics. Appl. Environ. Microbiol. 71, 7504–7514.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang, L., Srinivasan, U., Marrs, C. F., Ghosh, D., Gilsdorf, J. R., and Foxman, B. (2004) Library on a slide for bacterial comparative genomics. BMC Microbiol. 4, 12.PubMedCrossRefGoogle Scholar
  32. 32.
    Raddatz, G., Dehio, M., Meyer, T. F., and Dehio, C. (2001) PrimeArray: genome-scale primer design for DNA-microarray construction. Bioinformatics 17, 98–99.PubMedCrossRefGoogle Scholar
  33. 33.
    Xu, D., Li, G., Wu, L., Zhou, J., and Xu, Y. (2002) PRIMEGENS: robust and efficient design of gene-specific probes for microarray analysis. Bioinformatics 18, 1432–1437.PubMedCrossRefGoogle Scholar
  34. 34.
    Haas, S. A., Hild, M., Wright, A. P., Hain, T., Talibi, D., and Vingron, M. (2003) Genome-scale design of PCR primers and long oligomers for DNA microarrays. Nucleic Acids Res. 31, 5576–5581.PubMedCrossRefGoogle Scholar
  35. 35.
    Taboada, E. N., Acedillo, R. R., Carrillo, C. D., et al. (2004) Large-scale comparative genomics meta-analysis of Campylobacter jejuni isolates reveals low level of genome plasticity. J. Clin. Microbiol. 42, 4566–4576.PubMedCrossRefGoogle Scholar
  36. 36.
    Cui, X., Kerr, M. K., and Churchill, G. A. (2006) Transformations for cDNA Microarray Data. Statistical Applications in Genetics and Molecular Biology 2,
  37. 37.
    Yang, Y. H., Dudoit, S., Luu, P., et al. (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, e15.PubMedCrossRefGoogle Scholar
  38. 38.
    Smyth, G. K., Yang, Y. H., and Speed, T. (2003) Statistical issues in cDNA microarray data analysis. Methods Mol. Biol. 224, 111–136.PubMedGoogle Scholar
  39. 39.
    Saeed, A. I., Sharov, V., White, J., et al. (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378.PubMedGoogle Scholar
  40. 40.
    Dziejman, M., Balon, E., Boyd, D., Fraser, C. M., Heidelberg, J. F., and Mekalanos, J. J. (2002) Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc. Natl. Acad. Sci. USA 99, 1556–1561.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim, C. C., Joyce, E. A., Chan, K., and Falkow, S. (2002) Improved analytical methods for microarray-based genome-composition analysis. Genome Biol. 3, RESEARCH0065.PubMedCrossRefGoogle Scholar
  42. 42.
    Taboada, E. N., Acedillo, R. R., Luebbert, C. C., Findlay, W. A., and Nash, J. H. (2005) A new approach for the analysis of bacterial microarray-based Comparative Genomic Hybridization: insights from an empirical study. BMC Genomics 6, 78.PubMedCrossRefGoogle Scholar
  43. 43.
    Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14,863–14,868.CrossRefGoogle Scholar
  44. 44.
    Leonard, E. E., Takata, T., Blaser, M. J., Falkow, S., Tompkins, L. S., and Gaynor, E. C. (2003) Use of an open-reading frame-specific Campylobacter jejuni DNA microarray as a new genotyping tool for studying epidemiologically related isolates. J. Infect. Dis. 187, 691–694.PubMedCrossRefGoogle Scholar
  45. 45.
    Charlebois, R. L., Beiko, R. G., and Ragan, M. A. (2003) Microbial phylogenomics: branching out. Nature 421, 217.PubMedCrossRefGoogle Scholar
  46. 46.
    Champion, O. L., Gaunt, M. W., Gundogdu, O., et al. (2005) Comparative phylogenomics of the food-borne pathogen Campylobacter jejuni reveals genetic markers predictive of infection source. Proc. Natl. Acad. Sci. USA 102, 16,043–16,048.Google Scholar
  47. 47.
    Read, T. D., Peterson, S. N., Tourasse, N., et al. (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423, 81–86.PubMedCrossRefGoogle Scholar
  48. 48.
    Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P., and Trent, J. M. (1999) Expression profiling using cDNA microarrays. Nat. Genet. 21, 10–14.PubMedCrossRefGoogle Scholar
  49. 49.
    Rozen, S. and Skaletsky, H. (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386.PubMedGoogle Scholar
  50. 50.
    Lindroos, H. L., Mira, A., Repsilber, D., et al. (2005) Characterization of the genome composition of Bartonella koehlerae by microarray comparative genomic hybridization profiling. J. Bacteriol. 187, 6155–6165.PubMedCrossRefGoogle Scholar
  51. 51.
    Feinberg, A. P. and Vogelstein, B. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13.PubMedCrossRefGoogle Scholar
  52. 52.
    Bodenteich, A. S., Chissoe, Y., Wang, F., and Roe, B. A. (1994) Shotgun cloning as the strategy of choice to generate templates for high throughput dideoxynucleotide sequencing, in Automated DNA Sequencing and Analysis Techniques, (Adams, M. D., Fields, C., and Venter, C., eds.), London, UK, Academic Press, pp. 42–50.Google Scholar
  53. 53.
    Fitzgerald, J. R., Sturdevant, D. E., Mackie, S. M., Gill, S. R., and Musser, J. M. (2001) Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proc. Natl. Acad. Sci. USA 98, 8821–8826.PubMedCrossRefGoogle Scholar
  54. 54.
    Cassat, J. E., Dunman, P. M., McAleese, F., Murphy, E., Projan, S. J., and Smeltzer, M. S. (2005) Comparative genomics of Staphylococcus aureus musculoskeletal isolates. J. Bacteriol. 187, 576–592.PubMedCrossRefGoogle Scholar
  55. 55.
    Pearson, B. M., Pin, C., Wright, J., I’Anson, K., Humphrey, T., and Wells, J. M. (2003) Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Lett. 554, 224–230.CrossRefGoogle Scholar
  56. 56.
    Leonard, E. E., Tompkins, L. S., Falkow, S., and Nachamkin, I. (2004) Comparison of Campylobacter jejuni isolates implicated in Guillain-Barrè syndrome and strains that cause enteritis by a DNA microarray. Infect Immun. 72, 1199–1203.PubMedCrossRefGoogle Scholar
  57. 57.
    Smoot, J. C., Barbian, K. D., Van Gompel, J. J., et al. (2002) Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc. Natl. Acad. Sci. USA 99, 4668–4673.PubMedCrossRefGoogle Scholar
  58. 58.
    Porwollik, S., Wong, R. M., and McClelland, M. (2002) Evolutionary genomics of Salmonella: gene acquisitions revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 99, 8956–8961.PubMedCrossRefGoogle Scholar
  59. 59.
    Chan, K., Baker, S., Kim, C. C., Detweiler, C. S., Dougan, G., and Falkow, S. (2003) Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar typhimurium DNA microarray. J. Bacteriol. 185, 553–563.PubMedCrossRefGoogle Scholar
  60. 60.
    Porwollik, S., Boyd, E. F., Choy, C., et al. (2004) Characterization ofSalmonella enterica subspecies I genovars by use of microarrays. J. Bacteriol. 186, 5883–5898.PubMedCrossRefGoogle Scholar
  61. 61.
    Anjum, M. F., Marooney, C., Fookes, M., et al. (2005) Identification of core and variable components of the Salmonella enterica subspecies I genome by microarray. Infect. Immun. 73, 7894–7905.PubMedCrossRefGoogle Scholar
  62. 62.
    Doumith, M., Cazalet, C., Simoes, N., et al. (2004) New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect. Immun. 72, 1072–1083.PubMedCrossRefGoogle Scholar
  63. 63.
    Dobrindt, U., Agerer, F., Michaelis, K., et al. (2003) Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J. Bacteriol. 185, 1831–1840.PubMedCrossRefGoogle Scholar
  64. 64.
    Anjum, M. F., Lucchini, S., Thompson, A., Hinton, J. C., and Woodward, M. J. (2003) Comparative genomic indexing reveals the phylogenomics of Escherichia coli pathogens. Infect. Immun. 71, 4674–4683.PubMedCrossRefGoogle Scholar
  65. 65.
    Fukiya, S., Mizoguchi, H., Tobe, T., and Mori, H. (2004) Extensive genomic diversity in pathogenic Escherichia coli and Shigella Strains revealed by comparative genomic hybridization microarray. J. Bacteriol. 186, 3911–3921.PubMedCrossRefGoogle Scholar
  66. 66.
    Broekhuijsen, M., Larsson, P., Johansson, A., et al. (2003) Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J. Clin. Microbiol. 41, 2924–2931.PubMedCrossRefGoogle Scholar
  67. 67.
    Wolfgang, M. C., Kulasekara, B. R., Liang, X., et al. (2003) Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100, 8484–8489.PubMedCrossRefGoogle Scholar
  68. 68.
    Hinchliffe, S. J., Isherwood, K. E., Stabler, R. A., et al. (2003) Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. Genome Res. 13, 2018–2029.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhou, D., Han, Y., Dai, E., et al. (2004) Defining the genome content of live plague vaccines by use of whole-genome DNA microarray. Vaccine 22, 3367–3374.PubMedCrossRefGoogle Scholar
  70. 70.
    Brunelle, B. W., Nicholson, T. L., and Stephens, R. S. (2004) Microarray-based genomic surveying of gene polymorphisms in Chlamydia trachomatis. Genome Biol. 5, R42.PubMedCrossRefGoogle Scholar
  71. 71.
    Cummings, C. A., Brinig, M. M., Lepp, P. W., van de Pas, S., and Relman, D. A. (2004) Bordetella species are distinguished by patterns of substantial gene loss and host adaptation. J. Bacteriol. 186, 1484–1492.PubMedCrossRefGoogle Scholar
  72. 72.
    Stabler, R. A., Marsden, G. L., Witney, A. A., et al. (2005) Identification of pathogen-specific genes through microarray analysis of pathogenic and commensal Neisseria species. Microbiology 151, 2907–2922.PubMedCrossRefGoogle Scholar
  73. 73.
    Paustian, M. L., Kapur, V., and Bannantine, J. P. (2005) Comparative genomic hybridizations reveal genetic regions within the Mycobacterium avium complex that are divergent from Mycobacterium avium subsp. paratuberculosis isolates. J. Bacteriol. 187, 2406–2415.PubMedCrossRefGoogle Scholar
  74. 74.
    Mongodin, E. F., Hance, I. R., Deboy, R. T., et al. (2005) Gene transfer and genome plasticity in Thermotoga maritima, a model hyperthermophilic species. J. Bacteriol. 187, 4935–4944.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Eduardo N. Taboada
    • 1
  • Christian C. Luebbert
    • 1
  • John H.E. Nash
    • 1
  1. 1.Genomics and Proteomics Group, Institute for Biological Sciences, Canadian National Research CouncilCanada

Personalised recommendations