Lipid Rafts pp 73-84 | Cite as

Fluorescence Correlation Spectroscopy

  • Kirsten Bacia
  • Petra Schwille
Part of the Methods in Molecular Biology book series (MIMB, volume 398)


Fluorescence correlation spectroscopy (FCS) is a technique that allows for an extremely sensitive determination of molecular diffusion properties, down to the level of single molecules. It thus provides an attractive alternative to FRAP, requiring much less laser power and lower concentrations of fluorophores. FCS has recently been applied on live cells, and in comparison on domain-forming model membrane systems, to systematically study the influence of cholesterol on local membrane structure by investigating the mobility of selected lipid probes. The findings demonstrate the ability of FCS to sensitively distinguish between different local lipid structures, and emphasize the value of model systems for understanding membrane dynamics in general.

Key Words

Confocal microscopy diffusion fluorescence fluctuations giant unilamellar vesicles liquid-disordered liquid-ordered single molecules 


  1. 1.
    Magde, D., Elson, E. L., and Webb, W. W. (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13, 29–61.CrossRefPubMedGoogle Scholar
  2. 2.
    Politz, J. C., Browne, E. S., Wolf, D. E., and Pederson, T. (1998) Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc. Natl. Acad. Sci. USA 95, 6043–6048.CrossRefPubMedGoogle Scholar
  3. 3.
    Brock, R., Vamosi, G., Vereb, G., and Jovin, T. M. (1999) Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation microscopy. Proc. Natl. Acad. Sci. USA 96, 10,123–10,128.CrossRefPubMedGoogle Scholar
  4. 4.
    Schwille, P. (2001) Fluorescence Correlation Spectroscopy and Its Potential for Intracellular Applications. Cell Biochem. Biophys. 34, 383–408.CrossRefPubMedGoogle Scholar
  5. 5.
    Kohl, T., Haustein, E., and Schwille, P. (2005) Determining protease activity in vivo by fluorescence cross-correlation analysis. Biophys. J., 89(4), 2770–2782.CrossRefPubMedGoogle Scholar
  6. 6.
    Baudendistel, N., Muller, G., Waldeck, W., Angel, P., and Langowski, J. (2005) Two-hybrid fluorescence cross-correlation spectroscopy detects protein-protein interactions in vivo. Chemphyschemistry 6, 984–990.CrossRefGoogle Scholar
  7. 7.
    Kim, S. A., Heinze, K. G., Waxham, M. N., and Schwille, P. (2004) Intracellular calmodulin availability accessed with two-photon cross-correlation. Proc. Natl. Acad. Sci. USA 101, 105–110.CrossRefPubMedGoogle Scholar
  8. 8.
    Kim, S. A., Heinze, K. G., Bacia, K., Waxham, M. N., and Schwille, P. (2005) Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophys. J. 88, 4319–4336.CrossRefPubMedGoogle Scholar
  9. 9.
    Fahey, P. F., Koppel, D. E., Barak, L. S., Wolf, D. E., Elson, E. L., and Webb, W. W. (1977) Lateral diffusion in planar lipid bilayers. Science 195, 305–306.CrossRefPubMedGoogle Scholar
  10. 10.
    Korlach, J., Schwille, P., Webb, W. W., and Feigenson, G. W. (1999) Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. USA 96, 8461–8466.CrossRefPubMedGoogle Scholar
  11. 11.
    Schwille, P., Korlach, J., and Webb, W. W. (1999) Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36, 176–182.CrossRefPubMedGoogle Scholar
  12. 12.
    Schutz, G. J., Kada, G., Pastushenko, V. P., and Schindler, H. (2000) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy EMBO J. 19, 892–901.CrossRefPubMedGoogle Scholar
  13. 13.
    Fujiwara, T., Ritchie, K., Murakoshi, H., Jacobson, K., and Kusumi, A. (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157, 1071–1081.CrossRefPubMedGoogle Scholar
  14. 14.
    Bacia, K., Scherfeld, D., Kahya, N., and Schwille, P. (2004) Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys. J. 87, 1034–1043.CrossRefPubMedGoogle Scholar
  15. 15.
    Veatch, S. L. and Keller, S. L. (2003) A closer look at the canonical ‘Raft Mixture’ in model membrane studies. Biophys. J. 84, 725–726.CrossRefPubMedGoogle Scholar
  16. 16.
    Widengren, J. and Schwille, P. (2000) Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy. J. Phys. Chem. 104, 6416–6428.Google Scholar
  17. 17.
    Ries, J. and Schwille, P. (2006) Studying Slow Membrane Dynamics with Continuous Wave Scanning Fluorescence Correlation Spectroscopy. Biophys. J., 91(5), 1915–1924.CrossRefPubMedGoogle Scholar
  18. 18.
    Hess, S. T. and Webb, W. W. (2002) Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys. J. 83, 2300–2317.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Kirsten Bacia
    • 1
  • Petra Schwille
    • 1
  1. 1.Institute of BiophysicsDresden University of TechnologyDresdenGermany

Personalised recommendations