Lipid Rafts pp 143-157

Part of the Methods in Molecular Biology book series (MIMB, volume 398)

| Cite as

Saturation-Recovery Electron Paramagnetic Resonance Discrimination by Oxygen Transport (DOT) Method for Characterizing Membrane Domains

  • Witold K. Subczynski
  • Justyna Widomska
  • Anna Wisniewska
  • Akihiro Kusumi

Abstract

The discrimination by oxygen transport (DOT) method is a dual-probe saturation-recovery electron paramagnetic resonance approach in which the observable parameter is the spin-lattice relaxation time (T1) of lipid spin labels, and the measured value is the bimolecular collision rate between molecular oxygen and the nitroxide moiety of spin labels. This method has proven to be extremely sensitive to changes in the local oxygen diffusion-concentration product (around the nitroxide moiety) because of the long T1 of lipid spin labels (1–10 µs) and also because molecular oxygen is a unique probe molecule. Molecular oxygen is paramagnetic, small, and has the appropriate level of hydrophobicity that allows it to partition into various supramolecular structures such as different membrane domains. When located in two different membrane domains, the spin label alone most often cannot differentiate between these domains, giving very similar (indistinguishable) conventional electron paramagnetic resonance spectra and similar T1 values. However, even small differences in lipid packing in these domains will affect oxygen partitioning and oxygen diffusion, which can be easily detected by observing the different T1s from spin labels in these two locations in the presence of molecular oxygen. The DOT method allows one not only to distinguish between the different domains, but also to obtain the value of the oxygen diffusion-concentration product in these domains, which is a useful physical characteristic of the organization of lipids in domains. Profiles of the oxygen diffusion-concentration product (the oxygen transport parameter) in coexisting domains can be obtained in situ without the need for the physical separation of the two domains. Furthermore, under optimal conditions, the exchange rate of spin-labeled molecules between the two domains could be measured (10).

Key Words

Cholesterol discrimination by oxygen transport (DOT) lipid raft membrane domain liquid-ordered phase oxygen collision rate saturation-recovery EPR spin labeling 

References

  1. 1.
    Subczynski, W. K., Hyde, J. S., and Kusumi, A. (1991) Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes: a pulse ESR spin labeling study. Biochemistry 30, 8578–8590.CrossRefPubMedGoogle Scholar
  2. 2.
    Träuble, H. (1971) The movement of molecules across lipid membranes: A molecular theory. J. Membr. Biol. 4, 193–208.CrossRefGoogle Scholar
  3. 3.
    Pace, R. J. and Chan, S. I. (1982) Molecular motions in lipid bilayers. III. Lateral and transversal diffusion in bilayers. J. Chem. Phys. 76, 4241–4247.CrossRefGoogle Scholar
  4. 4.
    Altenbach, C., Greenhalgh, D. A., Khorana, H. G., and Hubbell, W. L. (1994) A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 91, 1667–1671.CrossRefPubMedGoogle Scholar
  5. 5.
    Subczynski, W. K., Hyde, J. S., and Kusumi, A. (1989) Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc. Natl. Acad. Sci. USA 86, 4474–4478.CrossRefPubMedGoogle Scholar
  6. 6.
    Subczynski, W. K., Hopwood, L. E., and Hyde, J. S. (1992) Is the mammalian cell plasma membrane a barrier to oxygen transport? J. Gen. Physiol. 100, 69–87.CrossRefPubMedGoogle Scholar
  7. 7.
    Subczynski, W. K., Lewis, R. N. A. H., McElhaney, R. N., Hodges, R. S., Hyde, J. S., and Kusumi, A. (1998) Molecular organization and dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine bilayers containing a transmembrane α-helical peptide. Biochemistry 37, 3156–3164.CrossRefPubMedGoogle Scholar
  8. 8.
    Subczynski, W. K., Pasenkiewicz-Gierula, M., McElhaney, R. N., Hyde, J. S., and Kusumi, A. (2003) Molecular dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine membranes containing transmembrane α-helical peptides with alternating leucine and alanine residues. Biochemistry 42, 3939–3948.CrossRefPubMedGoogle Scholar
  9. 9.
    Ashikawa, I., Yin, J.-J., Subczynski, W. K., Kouyama, T., Hyde, J. S., and Kusumi, A. (1994) Molecular organization and dynamics in bacteriorhodopsin-rich reconstituted membranes: discrimination of lipid environments by the oxygen transport parameter using a pulse ESR spin-labeling technique. Biochemistry 33, 4947–4952.CrossRefPubMedGoogle Scholar
  10. 10.
    Kawasaki, K., Yin, J.-J., Subczynski, W. K., Hyde, J. S., and Kusumi, A. (2001) Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: methodology development and its application to studies of influenza viral membrane. Biophys. J. 80, 738–748.CrossRefPubMedGoogle Scholar
  11. 11.
    Subczynski, W. K., Wisniewska, A., Hyde, J. S., and Kusumi, A. (2004) Membrane microdomains as detected by “discrimination by oxygen transport” based on pulse EPR spin labeling. Biophysical Society Discussions: Probing Membrane Microdomains, Asilomar, California, Abstract P84-A. Online study book at, http://www.biophysics.org/discussions/2004/studybook.htmGoogle Scholar
  12. 12.
    Wisniewska, A, Subczynski, W. K. (2004) Lipid domains: EPR discrimination by oxygen transport. Curr. Top. Biophys. 28, 89–94.Google Scholar
  13. 13.
    Subczynski, W. K, Wisniewska, A., Hyde, J. S., and Kusumi, A. (2007) Three-dimensional dynamic structure of the liquid-ordered domain in lipid membranes as examined by pulse-EPR oxygen probing. Biophys. J. 92, 1573–1584.CrossRefPubMedGoogle Scholar
  14. 14.
    Wisniewska, A. and Subczynski, W. K. (2006) Accumulation of macular xanthophylls in unsaturated membrane domains. Free Radic. Biol. Med. 40, 1820–1826.CrossRefPubMedGoogle Scholar
  15. 15.
    Kusumi, A., Subczynski, W. K., and Hyde, J. S. (1982) Oxygen transport parameter in membranes as deduced by saturation recovery measurements of spin-lattice relaxation times of spin labels. Proc. Natl. Acad. Sci. USA 79, 1854–1858.CrossRefPubMedGoogle Scholar
  16. 16.
    Windrem, D. A. and Plachy, W. Z. (1980) The diffusion-solubility of oxygen in lipid bilayers. Biochim. Biophys. Acta 600, 655–665.CrossRefPubMedGoogle Scholar
  17. 17.
    Hyde, J. S. and Subczynski, W. K. (1984) Simulation of ESR spectra of the oxygen-sensitive spin-label probe CTPO. J. Magn. Reson. 56, 125–130.Google Scholar
  18. 18.
    Hyde, J. S. and Subczynski, W. K. (1989) Spin-label oximetry, in Biological Magnetic Resonance, vol. 8 (Berliner, L. J. and Reuben, J., eds.), Plenum Press, New York, pp. 399–425.Google Scholar
  19. 19.
    Subczynski, W. K. and Hyde, J. S. (1984) Diffusion of oxygen in water and hydrocarbons using an electron spin resonance spin-label technique. Biophys. J. 45, 743–748.CrossRefPubMedGoogle Scholar
  20. 20.
    Egreet-Charlier, M., Sanson, A., Ptak, M., and Bouloussa, O. (1978) Ionization of fatty acids at lipid-water interface. FEBS Lett. 89, 313–316.CrossRefGoogle Scholar
  21. 21.
    Kusumi, A., Subczynski, W. K., and Hyde. J. S. (1982) Effects of pH on ESR spectra of stearic acid spin labels in membranes: probing the membrane surface. Fed. Proc. 41, 1394.Google Scholar
  22. 22.
    Kusumi, A. and Pasenkiewicz-Gierula, M. (1988) Rotational diffusion of a steroid molecule in phosphatidylcholine membranes: effects of alkyl chain length, unsaturation and cholesterol as studied by a spin label method. Biochemistry 27, 4407–4418.CrossRefPubMedGoogle Scholar
  23. 23.
    Pasenkiewicz-Gierula, M., Subczynski, W. K., and Kusumi, A. (1990) Rotational diffusion of a steroid molecule in phosphatidylcholine-cholesterol membranes: fluid phase microimmiscibility in unsaturated-phosphatidylcholine-cholesterol membranes. Biochemistry 29, 4059–4069.CrossRefPubMedGoogle Scholar
  24. 24.
    Hyde, J. S., Subczynski, W. K., Camenisch, T. G., Ratke, J. J., and Froncisz, W. (2004) Spin label EPR T1 values using saturation recovery from 2 to 35 GHz. J. Phys. Chem. B 27, 9524–9529.CrossRefGoogle Scholar
  25. 25.
    Subczynski, W. K., Felix, C. C., Klug, C. S., and Hyde, J. S. (2005) Concentration by centrifugation for gas exchange EPR oximetry measurements with loop-gap resonators. J. Magn. Reson. 176, 244–248.CrossRefPubMedGoogle Scholar
  26. 26.
    Yin, J.-J. and Hyde, J. S. (1987) Spin-label saturation-recovery electron spin resonance measurements of oxygen transport in membranes. Z. Phys. Chem. (Munich) 153, 57–65.Google Scholar
  27. 27.
    Hyde, J. S., Yin, J.-J., Feix, J. B., and Hubbell, W. L. (1990) Advances in spin label oximetry. Pure Appl. Chem. 62, 255–260.CrossRefGoogle Scholar
  28. 28.
    Yin, J.-J. and Hyde, J. S. (1989) Use of high observing power in electron spin resonance saturation-recovery experiments in spin-labeled membranes. J. Chem. Phys. 91, 6029–6035.CrossRefGoogle Scholar
  29. 29.
    Almeida, P. F. F., Vaz, W. L. C., and Thompson, T. E. (1992) Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol bilayers: a free volume analysis. Biochemistry 31, 6739–6747.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Witold K. Subczynski
    • 1
  • Justyna Widomska
    • 1
  • Anna Wisniewska
    • 2
  • Akihiro Kusumi
    • 3
  1. 1.Dept. of BiophysicsMedical College of WisconsinMilwaukeeUSA
  2. 2.Dept. of Biophysics, Faculty of BiotechnologyJagiellonian UniversityKrakowPoland
  3. 3.Membrane Mechanisms Project, ICORP, Japan Science and Technology AgencyKyoto University, ShougoinKyotoJapan

Personalised recommendations