Salmonella pp 133-175

Part of the Methods in Molecular Biology book series (MIMB, volume 394)

Salmonella Phages and Prophages—Genomics and Practical Aspects

  • Andrew M. Kropinski
  • Alexander Sulakvelidze
  • Paulina Konczy
  • Cornelius Poppe


Numerous bacteriophages specific to Salmonella have been isolated or identified as part of host genome sequencing projects. Phylogenetic analysis of the sequenced phages, based on related protein content using CoreGenes, reveals that these viruses fall into five groupings (P27-like, P2-like, lambdoid, P22-like, and T7-like) and three outliers (ɛ15, KS7, and Felix O1). The P27 group is only represented by ST64B; the P2 group contains Fels-2, SopEφ, and PSP3; the lambdoid Salmonella phages include Gifsy-1, Gifsy-2, and Fels-1. The P22-like viruses include ɛ34, ES18, P22, ST104, and ST64T. The only member of the T7-like group is SP6. The properties of each of these phages are discussed, along with their role as agents of genetic exchange and as therapeutic agents and their involvement in phage typing.

Key Words

Bacteriophage temperate lytic prophage genome analysis genetic map genome evolution P22-like phages T7-like phages lambdoid phages 


  1. 1.
    Rohwer, F. (2003) Global phage diversity. Cell 113, 141.PubMedCrossRefGoogle Scholar
  2. 2.
    Broudy, T. B. and Fischetti, V. A. (2003) In vivo lysogenic conversion of Tox(−) Streptococcus pyogenes to Tox(+) with lysogenic streptococci or free phage. Infect. Immun. 71, 3782–3786.PubMedCrossRefGoogle Scholar
  3. 3.
    Newton, G. J., Daniels, C., Burrows, L. L., Kropinski, A. M., Clarke, A. J., and Lam, J. S. (2001) Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. Mol. Microbiol. 39, 1237–1247.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhou, Y., Sugiyama, H., and Johnson, E. A. (1993) Transfer of neurotoxigenicity from Clostridium butyricum to a nontoxigenic Clostridium botulinum type E-like strain. Appl. Environ. Microbiol. 59, 3825–3831.PubMedGoogle Scholar
  5. 5.
    Cairns, J., Stent, G. S., and Watson, J. D. (1966) Phage and the Origins of Molecular Biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  6. 6.
    Nicolle, P., Vieu, J. F., and Diverneau, G. (1970) Supplementary lysotyping of Vi-positive strains of Salmonella typhi, insensitive to all the adapted preparations of Craigie’s Vi II phage (group I+IV). Arch. Roum. Pathol. Exp. Microbiol. 29, 609–617.PubMedGoogle Scholar
  7. 7.
    Anderson, E. S., Ward, L. R., De Saxe, M. J., and De Sa, J. D. H. (1977) Bacteriophage-typing designations of Salmonella Typhimurium. J. Hyg. 78, 297–300.CrossRefGoogle Scholar
  8. 8.
    Anderson, E. S. (1964) The phage typing of Salmonella other than S. Typhi, in The World Problem of Salmonellosis (Van Oye, E., ed), Dr.W.Junk Publishers, The Hague, pp. 89–109.Google Scholar
  9. 9.
    Fischetti, V. A. (2001) Phage antibacterials make a comeback. Nat. Biotechnol. 19, 734–735.PubMedCrossRefGoogle Scholar
  10. 10.
    Ackermann, H.-W. and Abedon, S. T. (2000) Bacteriophage Names 2000: A compilation of known bacteriophages. (may 16, 2007).
  11. 11.
    Ackermann, H. W. (1998) Tailed bacteriophages: the order Caudovirales. Adv. Virus Res. 51, 135–201.PubMedCrossRefGoogle Scholar
  12. 12.
    Kropinski, A. M., Kovalyova, I. V., Billington, S. J., et al. Virology (in press)Google Scholar
  13. 13.
    Villafane, R., Casjens, S. R., and Kropinski, A. M. (2005) Sequence of Salmonella enterica serovar Anatum-specific bacteriophage Epsilon34. Unpublished results.Google Scholar
  14. 14.
    Casjens, S. R., Gilcrease, E. B., Winn-Stapley, D. A., et al. (2005) The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J. Bacteriol. 187, 1091–1104.PubMedCrossRefGoogle Scholar
  15. 15.
    Kuhn, J., Suissa, M., Chiswell, D., et al. (2002) A bacteriophage reagent for Salmonella: molecular studies on Felix 01. Int. J. Food Microbiol. 74, 217–227.PubMedCrossRefGoogle Scholar
  16. 16.
    Sriranganathan, N., Whichard, J. M., Pierson, F. W., Kapur, V., and Weigt, L. A. (2004) Bacteriophage Felix O1: genetic characterization (GenBank accession number NC_005282). Unpublished results.Google Scholar
  17. 17.
    McClelland, M., Sanderson, K. E., Spieth, J., et al. (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856.PubMedCrossRefGoogle Scholar
  18. 18.
    Reen, F. J., Boyd, E. F., Porwollik, S., et al. (2005) Genomic comparisons of Salmonella enterica serovar Dublin, Agona, and Typhimurium strains recently isolated from milk filters and bovine samples from Ireland, using a Salmonella microarray. Appl. Environ. Microbiol. 71, 1616–1625.PubMedCrossRefGoogle Scholar
  19. 19.
    Bossi, L. and Figueroa-Bossi, N. (2005) Prophage arsenal of Salmonella enterica serovar Typhimurium, in Phages: Their Role in Bacterial Pathogenesis and Biotechnology (Waldor, M. K., Friedman, D. I., and Adhya, S. L., eds.), ASM Press, Washington, DC, pp. 165–186.Google Scholar
  20. 20.
    Mirold, S., Rabsch, W., Rohde, M., et al. (1999) Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc. Natl. Acad. Sci. U. S. A. 96, 9845–9850.PubMedCrossRefGoogle Scholar
  21. 21.
    Kim, S., Kim, S. H., Chun, S. G., Lee, S. W., Kang, Y. H., and Lee, B. K. (2005) Therapeutic effect of bacteriophage from Salmonella Typhimurium (GenBank Accession Number NC_006940). Unpublished results.Google Scholar
  22. 22.
    Vander Byl, C. and Kropinski, A. M. (2000) Sequence of the genome of Salmonella bacteriophage P22. J. Bacteriol. 182, 6472–6481.CrossRefGoogle Scholar
  23. 23.
    Pedulla, M. L., Ford, M. E., Karthikeyan, T., et al. (2003) Corrected sequence of the bacteriophage P22 genome. J. Bacteriol. 185, 1475–1477.PubMedCrossRefGoogle Scholar
  24. 24.
    Christie, G. E. and Xu, P. (2002) Bacteriophage PSP3, complete genome (GenBank accession number NC_005340). Unpublished results.Google Scholar
  25. 25.
    Dobbins, A. T., George, M., Jr., Basham, D. A., et al. (2004) Complete genomic sequence of the virulent Salmonella bacteriophage SP6. J. Bacteriol. 186, 1933–1944.PubMedCrossRefGoogle Scholar
  26. 26.
    Mmolawa, P. T., Schmieger, H., and Heuzenroeder, M. W. (2003) Bacteriophage ST64B, a genetic mosaic of genes from diverse sources isolated from Salmonella enterica serovar typhimurium DT 64. J. Bacteriol. 185, 6481–6485.PubMedCrossRefGoogle Scholar
  27. 27.
    Mmolawa, P. T., Schmieger, H., Tucker, C. P., and Heuzenroeder, M. W. (2003) Genomic structure of the Salmonella enterica serovar Typhimurium DT 64 bacteriophage ST64T: evidence for modular genetic architecture. J. Bacteriol. 185, 3473–3475.PubMedCrossRefGoogle Scholar
  28. 28.
    Tanaka, K., Nishimori, K., Makino, S., et al. (2004) Molecular characterization of a prophage of Salmonella enterica serotype Typhimurium DT104. J. Clin. Microbiol. 42, 1807–1812.PubMedCrossRefGoogle Scholar
  29. 29.
    Boyd, J. S. (1950) The symbiotic bacteriophages of Salmonella typhimurium. J. Pathol. Bacteriol. 62, 501–517.PubMedCrossRefGoogle Scholar
  30. 30.
    Thomson, N., Baker, S., Pickard, D., et al. (2004) The role of prophage-like elements in the diversity of Salmonella enterica serovars. J. Mol. Biol. 339, 279–300.PubMedCrossRefGoogle Scholar
  31. 31.
    Rohwer, F. and Edwards, R. (2002) The Phage Proteomic Tree: a genome-based taxonomy for phage. J. Bacteriol. 184, 4529–4535.PubMedCrossRefGoogle Scholar
  32. 32.
    Zafar, N., Mazumder, R., and Seto, D. (2002) CoreGenes: a computational tool for identifying and cataloging “core” genes in a set of small genomes. BMC Bioinformatics 3, 12.PubMedCrossRefGoogle Scholar
  33. 33.
    Fauquet, C. M., Mayo, M. A., Maniloff, J. Dresselberger, V., and Ball, L. A. eds. (2005) VIIIth Report of the International Committee on Taxonomy of Viruses. Academic Press, London, England.Google Scholar
  34. 34.
    Kumar, S., Tamura, K., and Nei, M. (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5, 150–163.PubMedCrossRefGoogle Scholar
  35. 35.
    Zinder, N. D. and Lederberg, J. (1952) Genetic exchange in Salmonella. J. Bacteriol. 64, 679.PubMedCrossRefGoogle Scholar
  36. 36.
    Venza Colon, C. J., Vasquez Leon, A. Y., and Villafane, R. J. (2004) Initial interaction of the P22 phage with the Salmonella typhimurium surface. P. R. Health Sci. J. 23, 95–101.PubMedGoogle Scholar
  37. 37.
    Steinbacher, S., Miller, S., Baxa, U., Weintraub, A., and Seckler, R. (1997) Interaction of Salmonella phage P22 with its O-antigen receptor studied by X-ray crystallography. Biol. Chem. 378, 337–343.PubMedCrossRefGoogle Scholar
  38. 38.
    Cho, E. H., Nam, C. E., Alcaraz, R., Jr., and Gardner, J. F. (1999) Site-specific recombination of bacteriophage P22 does not require integration host factor. J. Bacteriol. 181, 4245–4249.PubMedGoogle Scholar
  39. 39.
    Hofer, B., Ruge, M., and Dreiseikelmann, B. (1995) The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product. J. Bacteriol. 177, 3080–3086.PubMedGoogle Scholar
  40. 40.
    Ranade, K. and Poteete, A. R. (1993) Superinfection exclusion (sieB) genes of bacteriophages P22 and lambda. J. Bacteriol. 175, 4712–4718.PubMedGoogle Scholar
  41. 41.
    Iseki, S. and Kashiwagi, K. (1955) Induction of somatic antigen 1 by bacteriophage in Salmonella group B. Proc. Jpn. Acad. 31, 558–564.Google Scholar
  42. 42.
    Rundell, K. and Shuster, C. W. (1975) Membrane-associated nucleotide sugar reactions: influence of mutations affecting lipopolysaccharide on the first enzyme of O-antigen synthesis. J. Bacteriol. 123, 928–936.PubMedGoogle Scholar
  43. 43.
    Ebel-Tsipis, J., Botstein, D., and Fox, M. S. (1972) Generalized transduction by phage P22 in Salmonella typhimurium. I. Molecular origin of transducing DNA. J. Mol. Biol. 71, 433–448.PubMedCrossRefGoogle Scholar
  44. 44.
    Poteete, A. R. (1988) Bacteriophage P22, in The Bacteriophages (Calendar, R., ed.), Plenum Press, New York, pp. 647–682.Google Scholar
  45. 45.
    Parent, K. N., Doyle, S. M., Anderson, E., and Teschke, C. M. (2005) Electrostatic interactions govern both nucleation and elongation during phage P22 procapsid assembly. Virology 340, 33–45.PubMedCrossRefGoogle Scholar
  46. 46.
    Weigele, P. R., Sampson, L., Winn-Stapley, D., and Casjens, S. R. (2005) Molecular genetics of bacteriophage P22 scaffolding protein’s functional domains. J. Mol. Biol. 348, 831–844.PubMedCrossRefGoogle Scholar
  47. 47.
    Kang, S. and Prevelige, P. E., Jr. (2005) Domain study of bacteriophage p22 coat protein and characterization of the capsid lattice transformation by hydrogen/deuterium exchange. J. Mol. Biol. 347, 935–948.PubMedCrossRefGoogle Scholar
  48. 48.
    Anderson, E. and Teschke, C. M. (2003) Folding of phage P22 coat protein monomers: kinetic and thermodynamic properties. Virology 313, 184–197.PubMedCrossRefGoogle Scholar
  49. 49.
    Cingolani, G., Moore, S. D., Prevelige, P. E., Jr., and Johnson, J. E. (2002) Preliminary crystallographic analysis of the bacteriophage P22 portal protein. J. Struct. Biol. 139, 46–54.PubMedCrossRefGoogle Scholar
  50. 50.
    Casjens, S. and Weigele, P. (2005) DNA packaging by bacteriophage P22. In Viral Genome Packaging Machines: Genetics, Structure, and Mechanisms. (Catalano, C. E., ed), pp. 80–88, Landes Bioscience, Georgetown, TX.CrossRefGoogle Scholar
  51. 51.
    Tang, L., Marion, W. R., Cingolani, G., Prevelige, P. E., and Johnson, J. E. (2005) Three-dimensional structure of the bacteriophage P22 tail machine. EMBO J. 24, 2087–2095.PubMedCrossRefGoogle Scholar
  52. 52.
    Andrews, D., Butler, J. S., Al-Bassam, J., et al. (2005) Bacteriophage P22 tail accessory factor GP26 is a long triple-stranded coiled-coil. J. Biol. Chem. 280, 5929–5933.PubMedCrossRefGoogle Scholar
  53. 53.
    Wu, H., Sampson, L., Parr, R., and Casjens, S. (2002) The DNA site utilized by bacteriophage P22 for initiation of DNA packaging. Mol. Microbiol. 45, 1631–1646.PubMedCrossRefGoogle Scholar
  54. 54.
    Schmieger, H. and Schicklmaier, P. (1999) Transduction of multiple drug resistance of Salmonella enterica serovar Typhimurium DT104. FEMS Microbiol. Lett. 170, 251–256.PubMedCrossRefGoogle Scholar
  55. 55.
    Gilcrease, E. B., Winn-Stapley, D. A., Hewitt, F. C., Joss, L., and Casjens, S. R. (2005) Nucleotide sequence of the head assembly gene cluster of bacteriophage L and decoration protein characterization. J. Bacteriol. 187, 2050–2057.PubMedCrossRefGoogle Scholar
  56. 56.
    Petri, J. B. and Schmieger, H. (1990) Isolation of fragments with pac function for phage P22 from phage LP7 DNA and comparison of packaging gene 3 sequences. Gene 88, 47–55.PubMedCrossRefGoogle Scholar
  57. 57.
    Kuo, T. T. and Stocker, B. A. (1970) ES18, a general transducing phage for smooth and nonsmooth Salmonella typhimurium. Virology 42, 621–632.PubMedCrossRefGoogle Scholar
  58. 58.
    Le, M. L. and Chalon, A. M. (1975) Sensitivity to bacteriophage ES18 of strains of “S. dublin”, “S. enteritidis” and “S. blegdam” and related serotypes. Ann. Microbiol. 126, 327–331.Google Scholar
  59. 59.
    Killmann, H., Braun, M., Herrmann, C., and Braun, V. (2001) FhuA barrel-cork hybrids are active transporters and receptors. J. Bacteriol. 183, 3476–3487.PubMedCrossRefGoogle Scholar
  60. 60.
    Yamamoto, N. (1978) A generalized transducing salmonella phage ES18 can recombine with a serologically unrelated phage Fels 1. J. Gen. Virol. 38, 263–272.PubMedCrossRefGoogle Scholar
  61. 61.
    Mmolawa, P. T., Willmore, R., Thomas, C. J., and Heuzenroeder, M. W. (2002) Temperate phages in Salmonella enterica serovar Typhimurium: implications for epidemiology. Int. J. Med. Microbiol. 291, 633–644.PubMedCrossRefGoogle Scholar
  62. 62.
    Greenberg, M., Dunlap, J., and Villafane, R. (1995) Identification of the tailspike protein from the Salmonella newington phage epsilon 34 and partial characterization of its phage-associated properties. J. Struct. Biol. 115, 283–289.PubMedCrossRefGoogle Scholar
  63. 63.
    Figueroa-Bossi, N., Coissac, E., Netter, P., and Bossi, L. (1997) Unsuspected prophage-like elements in Salmonella typhimurium. Mol. Microbiol. 25, 161–173.PubMedCrossRefGoogle Scholar
  64. 64.
    Figueroa-Bossi, N., Uzzau, S., Maloriol, D., and Bossi, L. (2001) Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol. Microbiol. 39, 260–271.PubMedCrossRefGoogle Scholar
  65. 65.
    Yamamoto, N. (1969) Genetic evolution of bacteriophage. I. Hybrids between unrelated bacteriophages P22 and Fels 2. Proc. Natl. Acad. Sci. U. S. A. 62, 63–69.PubMedCrossRefGoogle Scholar
  66. 66.
    Yamamoto, N. (1967) The origin of bacteriophage P221. Virology 33, 545–547.PubMedCrossRefGoogle Scholar
  67. 67.
    Caldon, C. E., Yoong, P., and March, P. E. (2001) Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol. Microbiol. 41, 289–297.PubMedCrossRefGoogle Scholar
  68. 68.
    Ho, T. D. and Slauch, J. M. (2001) OmpC is the receptor for Gifsy-1 and Gifsy-2 bacteriophages ofSalmonella. J. Bacteriol. 183, 1495–1498.PubMedCrossRefGoogle Scholar
  69. 69.
    Little, J. W. (1991) Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73, 411–421.PubMedCrossRefGoogle Scholar
  70. 70.
    Roberts, J. W., Roberts, C. W., and Mount, D. W. (1977) Inactivation and proteolytic cleavage of phage lambda repressor in vitro in an ATP-dependent reaction. Proc. Natl. Acad. Sci. U. S. A. 74, 2283–2287.PubMedCrossRefGoogle Scholar
  71. 71.
    Ho, T. D., Figueroa-Bossi, N., Wang, M., Uzzau, S., Bossi, L., and Slauch, J. M. (2002) Identification of GtgE, a novel virulence factor encoded on the Gifsy-2 bacteriophage of Salmonella enterica serovar Typhimurium. J. Bacteriol. 184, 5234–5239.PubMedCrossRefGoogle Scholar
  72. 72.
    Recktenwald, J. and Schmidt, H. (2002) The nucleotide sequence of Shiga toxin (Stx) 2e-encoding phage φP27 is not related to other Stx phage genomes, but the modular genetic structure is conserved. [Erratum in Infect. Immun. 2002; 70, 4755] Infect. Immun. 70, 1896–1908.PubMedCrossRefGoogle Scholar
  73. 73.
    Allison, G. E., Angeles, D., Tran-Dinh, N., and Verma, N. K. (2002) Complete genomic sequence of SfV, a serotype-converting temperate bacteriophage of Shigella flexneri. J. Bacteriol. 184, 1974–1987.PubMedCrossRefGoogle Scholar
  74. 74.
    Tucker, C. P. and Heuzenroeder, M. W. (2004) ST64B is a defective bacteriophage in Salmonella enterica serovar Typhimurium DT64 that encodes a functional immunity region capable of mediating phage-type conversion. Int. J. Med. Microbiol. 294, 59–63.PubMedCrossRefGoogle Scholar
  75. 75.
    Dunn, J. J. and Studier, F. W. (1983) Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166, 477–535.PubMedCrossRefGoogle Scholar
  76. 76.
    Molineux, I. J. (2001) No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol. Microbiol. 40, 1–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Walkinshaw, M. D., Taylor, P., Sturrock, S. S., et al. (2002) Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol. Cell 9, 187–194.PubMedCrossRefGoogle Scholar
  78. 78.
    Sturrock, S. S., Dryden, D. T., Atanasiu, C., et al. (2001) Crystallization and preliminary X-ray analysis of ocr, the product of gene 0.3 of bacteriophage T7. Acta Crystallogr. D Biol. Crystallogr. 57, 1652–1654.PubMedCrossRefGoogle Scholar
  79. 79.
    Marchand, I., Nicholson, A. W., and Dreyfus, M. (2001) High-level autoenhanced expression of a single-copy gene in Escherichia coli: overproduction of bacteriophage T7 protein kinase directed by T7 late genetic elements. Gene 262, 231–238.PubMedCrossRefGoogle Scholar
  80. 80.
    Robertson, E. S., Aggison, L. A., and Nicholson, A. W. (1994) Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7-infected Escherichia coli. Mol. Microbiol. 11, 1045–1057.PubMedCrossRefGoogle Scholar
  81. 81.
    Chen, Z. and Schneider, T. D. (2005) Information theory based T7-like promoter models: classification of bacteriophages and differential evolution of promoters and their polymerases. Nucleic Acids Res. 33, 6172–6187.PubMedCrossRefGoogle Scholar
  82. 82.
    Scholl, D., Kieleczawa, J., Kemp, P., et al. (2004) Genomic analysis of bacteriophages SP6 and K1-5, an estranged subgroup of the T7 supergroup. J. Mol. Biol. 335, 1151–1171.PubMedCrossRefGoogle Scholar
  83. 83.
    Nilsson, A. S. and Haggard-Ljungquist, E. (2006) The P2-like bacteriophages, in The Bacteriophages (Calendar, R., ed.), Oxford University Press, New York, pp. 365–390.Google Scholar
  84. 84.
    Yamamoto, N. and McDonald, R. J. (1986) Genomic structure of phage F22, a hybrid between serologically and morphologically unrelated Salmonella typhimurium bacteriophages P22 and Fels 2. Genet. Res. 48, 139–143.PubMedCrossRefGoogle Scholar
  85. 85.
    Pelludat, C., Mirold, S., and Hardt, W. D. (2003) The SopEPhi phage integrates into the ssrA gene of Salmonella enterica serovar Typhimurium A36 and is closely related to the Fels-2 prophage. J. Bacteriol. 185, 5182–5191.PubMedCrossRefGoogle Scholar
  86. 86.
    Rudolph, M. G., Weise, C., Mirold, S., et al. (1999) Biochemical analysis of SopE from Salmonella typhimurium, a highly efficient guanosine nucleotide exchange factor for RhoGTPases. J. Biol. Chem. 274, 30501–30509.PubMedCrossRefGoogle Scholar
  87. 87.
    Joshi, A., Siddiqi, J. Z., Rao, G. R., and Chakravorty, M. (1982) MB78, a virulent bacteriophage of Salmonella typhimurium. J. Virol. 41, 1038–1043.PubMedGoogle Scholar
  88. 88.
    Murty, S. S., Pandey, B., and Chakravorty, M. (1998) Mapping of additional restriction enzyme cleavage sites on bacteriophage MB78 genome. J. Biosci. 23, 151–154.CrossRefGoogle Scholar
  89. 89.
    Khan, S. A., Murty, S. S., Zargar, M. A., and Chakravorty, M. (1991) Replication, maturation and physical mapping of bacteriophage MB78 genome. J. Biosci. 16, 161–174.CrossRefGoogle Scholar
  90. 90.
    Verma, M. and Chakravorty, M. (1985) Hybrid between temperate phage P22 and virulent phage MB78. Biochem. Biophys. Res. Commun. 132, 42–48.PubMedCrossRefGoogle Scholar
  91. 91.
    Verma, M., Siddiqui, J. Z., and Chakravorty, M. (1985) Bacteriophage P22 helps bacteriophage MB78 to overcome the transcription inhibition in rifampicin resistant mutant of Salmonella typhimurium. Biochem. Int. 11, 177–186.PubMedGoogle Scholar
  92. 92.
    Uetake, H. and Uchita, T. (1959) Mutants of Salmonella ɛ15 with abnormal conversion properties. Virology 9, 495–505.PubMedCrossRefGoogle Scholar
  93. 93.
    Uetake, H., Luria, S. E., and Burrous, J. W. (1958) Conversion of somatic antigens in Salmonella by phage infection leading to lysis or lysogeny. Virology 5, 68–91.PubMedCrossRefGoogle Scholar
  94. 94.
    Uetake, H., Nakagawa, T., and Akiba, T. (1955) The relationship of bacteriophage to antigenic changes in group E Salmonellas. J. Bacteriol. 69, 571–579.PubMedGoogle Scholar
  95. 95.
    Bray, D. and Robbins, P. W. (1967) Mechanism of ɛ15 conversion studied with bacteriophage mutants. J. Mol. Biol. 30, 457–475.PubMedCrossRefGoogle Scholar
  96. 96.
    Losick, R. and Robbins, P. W. (1967) Mechanism of ɛ15 conversion studied with a bacterial mutant. J. Mol. Biol. 30, 445–455.PubMedCrossRefGoogle Scholar
  97. 97.
    Robbins, P. and Uchida, T. (1962) Studies on the chemical basis of the phage conversion of O-antigens in the E-group salmonellae. Biochemistry 1, 325–335.CrossRefGoogle Scholar
  98. 98.
    Robbins, P. and Uchida, T. (1965) Chemical and macromolecular structure of O-antigens from Salmonella anatum strains carrying mutants of bacteriophage Epsilon 15. J. Biol. Chem. 240, 375–383.Google Scholar
  99. 99.
    Robbins, P., Keller, J. M., Wright, A., and Bernstein, R. L. (1965) Enzymatic and kinetics studies on the mechanism of O-antigen conversion by bacteriophage Epsilon 15. J. Biol. Chem. 240, 384–390.PubMedGoogle Scholar
  100. 100.
    Uchida, T., Robbins, P. W., and Luria, S. E. (1963) Analysis of the serological determinant groups of the Salmonella E-group O-antigens. Biochemistry 2, 663–668.PubMedCrossRefGoogle Scholar
  101. 101.
    McConnell, M., Walker, B., Middleton, P., et al. (1992) Restriction endonuclease and genetic mapping studies indicate that the vegetative genome of the temperate, Salmonella-specific bacteriophage, epsilon 15, is circularly-permuted. Arch. Virol. 123, 215–221.PubMedCrossRefGoogle Scholar
  102. 102.
    Kanegasaki, S. and Wright, A. (1973) Studies on the mechanism of phage adsorption: interaction between Epsilon 15 and its cellular receptor. Virology 52, 160–173.PubMedCrossRefGoogle Scholar
  103. 103.
    Takeda, K. and Uetake, H. (1973) In vitro interaction between phage and receptor lipopolysaccharide: a novel glycosidase associated with phage Epsilon 15. Virology 52, 148–159.CrossRefGoogle Scholar
  104. 104.
    McConnell, M. R., Reznick, A., and Wright, A. (1979) Studies on the initial interactions of bacteriophage Epsilon 15 with its host cell, Salmonella anatum. Virology 94, 10–23.PubMedCrossRefGoogle Scholar
  105. 105.
    Vezzi, A., Campanaro, S., D’Angelo, M., et al. (2004) Genome analysis of Photobacterium profundum reveals the complexity of high pressure adaptations. (GenBank accession number NC_006370). Unpublished results.Google Scholar
  106. 106.
    Summer, E. J., Gonzalez, C. F., Bomer, M., et al. (2006) Divergence and mosaicism among virulent soil phages of the Burkholderia cepacia complex. J. Bacteriol. 188, 255–268.PubMedCrossRefGoogle Scholar
  107. 107.
    Liu, M., Gingery, M., Doulatov, S. R., et al. (2004) Genomic and genetic analysis of Bordetella bacteriophages encoding reverse transcriptase-mediated tropism-switching cassettes. J. Bacteriol. 186, 1503–1517.PubMedCrossRefGoogle Scholar
  108. 108.
    Kropinski, A. M. (2000) Sequence of the genome of the temperate, serotype-converting, Pseudomonas aeruginosa bacteriophage D3. J. Bacteriol. 182, 6066–6074.PubMedCrossRefGoogle Scholar
  109. 109.
    van Sinderen, D., Karsens, H., Kok, J., et al. (1996) Sequence analysis and molecular characterization of the temperate lactococcal bacteriophage r1t. Mol. Microbiol. 19, 1343–1355.PubMedCrossRefGoogle Scholar
  110. 110.
    Craig, N. L. and Roberts, J. W. (1980) E. coli recA protein-directed cleavage of phage lambda repressor requires polynucleotide. Nature 283, 26–30.PubMedCrossRefGoogle Scholar
  111. 111.
    Magrini, V., Storms, M. L., and Youderian, P. (1999) Site-specific recombination of temperate Myxococcus xanthus phage Mx8: regulation of integrase activity by reversible, covalent modification. J. Bacteriol. 181, 4062–4070.PubMedGoogle Scholar
  112. 112.
    Clark, A. J., Inwood, W., Cloutier, T., and Dhillon, T. S. (2001) Nucleotide sequence of coliphage HK620 and the evolution of lambdoid phages. J. Mol. Biol. 311, 657–679.PubMedCrossRefGoogle Scholar
  113. 113.
    Casjens, S., Winn-Stapley, D. A., Gilcrease, E. B., et al. (2004) The chromosome of Shigella flexneri bacteriophage Sf6: complete nucleotide sequence, genetic mosaicism, and DNA packaging. J. Mol. Biol. 339, 379–394.PubMedCrossRefGoogle Scholar
  114. 114.
    Jiang, W., Chang, J., Jakana, J., et al. (2006) Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus. Nature 439, 612–616.PubMedCrossRefGoogle Scholar
  115. 115.
    Ackermann, H.-W. and DuBow, M. S. (1987) Natural groups of bacteriophages, in Viruses of Prokaryotes, Volume II (Ackermann, H.-W. and DuBow, M. S., eds.), CRC Press, Boca Raton, FL, pp. 85–100.Google Scholar
  116. 116.
    Felix, A. and Callow, B. R. (1943) Typing of paratyphoid B bacilli by means of Vi bacteriophage. Br. Med. J. 2, 4308–4310.CrossRefGoogle Scholar
  117. 117.
    Kallings, L. O. (1967) Sensitivity of various salmonella strains to felix 0–1 phage. Acta Pathol. Microbiol. Scand. 70, 446–454.PubMedCrossRefGoogle Scholar
  118. 118.
    Hudson, H. P., Lindberg, A. A., and Stocker, B. A. (1978) Lipopolysaccharide core defects in Salmonella typhimurium mutants which are resistant to Felix O phage but retain smooth character. J. Gen. Microbiol. 109, 97–112.PubMedGoogle Scholar
  119. 119.
    Hirsh, D. C. and Martin, L. D. (1983) Rapid detection of Salmonella spp. by using Felix-O1 bacteriophage and high-performance liquid chromatography. Appl. Environ. Microbiol. 45, 260–264.PubMedGoogle Scholar
  120. 120.
    Kuhn, J., Suissa, M., Wyse, J., et al. (2002) Detection of bacteria using foreign DNA: the development of a bacteriophage reagent for Salmonella. Int. J. Food Microbiol. 74, 229–238.PubMedCrossRefGoogle Scholar
  121. 121.
    Whichard, J. M., Sriranganathan, N., and Pierson, F. W. (2003) Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. J. Food Protect. 66, 220–225.Google Scholar
  122. 122.
    Maloy, S. R., Stewart, V. P., and Taylor, R. K. (1996) Genetic Analysis of Pathogenic Bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  123. 123.
    Davis, R. W., Botstein, D., and Roth, J. R. (1980) Advanced Bacterial Genetics: A Manual for Genetic Engineering. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  124. 124.
    Schmieger, H. (1972) Phage P22-mutants with increased or decreased transduction abilities. Mol. Gen. Genet. 119, 75–88.PubMedCrossRefGoogle Scholar
  125. 125.
    Benson, N. R. and Goldman, B. S. (1992) Rapid mapping in Salmonella typhimurium with Mud-P22 prophages. J. Bacteriol. 174, 1673–1681.PubMedGoogle Scholar
  126. 126.
    Youderian, P., Sugiono, P., Brewer, K. L., Higgins, N. P., and Elliott, T. (1988) Packaging specific segments of the Salmonella chromosome with locked-in Mud-P22 prophages. Genetics 118, 581–592.PubMedGoogle Scholar
  127. 127.
    Chen, L. M., Goss, T. J., Bender, R. A., Swift, S., and Maloy, S. (1998) Genetic analysis, using P22 challenge phage, of the nitrogen activator protein DNA-binding site in the Klebsiella aerogenes put operon. J. Bacteriol. 180, 571–577.PubMedGoogle Scholar
  128. 128.
    Szegedi, S. S. and Gumport, R. I. (2000) DNA binding properties in vivo and target recognition domain sequence alignment analyses of wild-type and mutant RsrI [N6-adenine] DNA methyltransferases. Nucleic Acids Res. 28, 3972–3981.PubMedCrossRefGoogle Scholar
  129. 129.
    Ashraf, S. I., Kelly, M. T., Wang, Y. K., and Hoover, T. R. (1997) Genetic analysis of the Rhizobium meliloti nifH promoter, using the P22 challenge phage system. J. Bacteriol. 179, 2356–2362.PubMedGoogle Scholar
  130. 130.
    Pfau, J. D. and Taylor, R. K. (1996) Genetic footprint on the ToxR-binding site in the promoter for cholera toxin. Mol. Microbiol. 20, 213–222.PubMedCrossRefGoogle Scholar
  131. 131.
    Popoff, M. Y. (2001) Antigenic Formulas of the Salmonella Serovars. WHO Collaborating Centre for Reference and Research on Salmonella, Pasteur Institute, Paris, France.Google Scholar
  132. 132.
    Popoff, M. Y., Bockemuhl, J., and Gheesling, L. L. (2004) Supplement 2002 (no. 46) to the Kauffmann-White scheme. Res. Microbiol. 155, 568–570.PubMedCrossRefGoogle Scholar
  133. 133.
    Anderson, E. S. and Williams, R. E. (1956) Bacteriophage typing of enteric pathogens and staphylococci and its use in epidemiology. J. Clin. Pathol. 9, 94–127.PubMedCrossRefGoogle Scholar
  134. 134.
    Callow, B. R. (1959) A new phage-typing scheme for Salmonella typhimurium. J. Hyg. 57, 346–359.CrossRefGoogle Scholar
  135. 135.
    Poppe, C., McFadden, K. A., and Demczuk, W. H. (1996) Drug resistance, plasmids, biotypes and susceptibility to bacteriophages of Salmonella isolated from poultry in Canada. Int. J. Food Microbiol. 30, 325–344.PubMedCrossRefGoogle Scholar
  136. 136.
    Lindberg, A. A. (1973) Bacteriophage receptors. Annu. Rev. Microbiol. 27, 205–241.PubMedCrossRefGoogle Scholar
  137. 137.
    Craigie, J. and Yen, C. H. (1938) The demonstration of types of B. typhosus by means of preparations of type II Vi phage. I. Principles and technique. Can. J. Public Health 29, 448–484.Google Scholar
  138. 138.
    Craigie, J. and Yen, C. H. (1938) The demonstration of types of B. typhosus by means of preparations of type II Vi phage. II. The stability and epidemiological significance of V form types of B. typhosus. Can. J. Public Health 29, 484–496.Google Scholar
  139. 139.
    Selander, R. K., Smith, N. H., Li, J., et al. (1992) Molecular evolutionary genetics of the cattle-adapted serovar Salmonella dublin. J. Bacteriol. 174, 3587–3592.PubMedGoogle Scholar
  140. 140.
    Nair, S., Alokam, S., Kothapalli, S., et al. (2004) Salmonella enterica serovar Typhi strains from which SPI7, a 134-kilobase island with genes for Vi exopolysaccharide and other functions, has been deleted. J. Bacteriol. 186, 3214–3223.PubMedCrossRefGoogle Scholar
  141. 141.
    Mitchell, E., O’Mahony, M., Lynch, D., et al. (1989) Large outbreak of food poisoning caused by Salmonella typhimurium definitive type 49 in mayonnaise. BMJ 298, 99–101.PubMedCrossRefGoogle Scholar
  142. 142.
    Ward, L. R., de Sa, J. D., and Rowe, B. (1987) A phage-typing scheme for Salmonella enteritidis. Epidemiol. Infect. 99, 291–294.PubMedCrossRefGoogle Scholar
  143. 143.
    Khakhria, R., Duck, D., and Lior, H. (1991) Distribution of Salmonella enteritidis phage types in Canada. Epidemiol. Infect. 106, 25–32.PubMedCrossRefGoogle Scholar
  144. 144.
    Demczuk, W., Soule, G., Clark, C., et al. (2003) Phage-based typing scheme for Salmonella enterica serovar Heidelberg, a causative agent of food poisonings in Canada. J. Clin. Microbiol. 41, 4279–4284.PubMedCrossRefGoogle Scholar
  145. 145.
    Duckworth, D. H. (1976) Who discovered bacteriophage? Bacteriol. Rev. 40, 793–802.PubMedGoogle Scholar
  146. 146.
    Summers, W. C. (1999) The hope of phage therapy, in Felix d’Herelle and the Origins of Molecular Biology, Yale University Press, New Haven, CT, pp. 108–124.Google Scholar
  147. 147.
    Sulakvelidze, A. and Barrow, P. (2005) Phage therapy in animals and agribusiness, in Bacteriophages: Biology and Application (Kutter, E. and Sulakvelidze, A., eds.), CRC Press, Boca Raton, FL, pp. 335–380.Google Scholar
  148. 148.
    Topley, W. W. C. and Wilson, J. (1925) Further observations of the role of the Twort-d’Herelle phenomenon in the epidemic spread of murine typhoid. J. Hyg. 24, 295–300.CrossRefGoogle Scholar
  149. 149.
    Topley, W. W. C., Wilson, J., and Lewis, E. R. (1925) Role of Twort-d’Herelle phenomenon in epidemics of mouse typhoid. J. Hyg. 24, 17–36.CrossRefGoogle Scholar
  150. 150.
    Fisk, R. T. (1938) Protective action of typhoid phage on experimental typhoid infection in mice. Proc. Soc. Exp. Biol. Med. 38, 659–660.Google Scholar
  151. 151.
    Ward, W. E. (1942) Protective action of VI bacteriophage in Eberthella typhi Infections in mice. J. Infect. Dis. 72, 172–176.CrossRefGoogle Scholar
  152. 152.
    Berchieri, A. J., Lovell, M. A., and Barrow, P. A. (1991) The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium. Res. Microbiol. 142, 541–549.PubMedCrossRefGoogle Scholar
  153. 153.
    Sulakvelidze, A. and Kutter, E. (2005) Bacteriophage therapy in humans, in Bacteriophages: Biology and Application (Kutter, E. and Sulakvelidze, A., eds.), CRC Press, Boca Raton, FL, pp. 381–436.Google Scholar
  154. 154.
    Knouf, E. G., Ward, W. E., Reichle, P. A., Bower, A. W., and Hamilton, P. M. (1946) Treatment of typhoid fever with type-specific bacteriophage. J. Am. Med. Assoc. 132, 134–136.PubMedGoogle Scholar
  155. 155.
    Desranleau, J. M. (1948) The treatment of typhoid fever by the use of Vi antityphoid bacteriophages. Can. J. Public Health 39, 317.PubMedGoogle Scholar
  156. 156.
    Desranleau, J. M. (1949) Progress in the treatment of typhoid fever with Vi phages. Can. J. Public Health 40, 473–478.PubMedGoogle Scholar
  157. 157.
    Jalava, K., Hensel, A., Szostak, M., Resch, S., and Lubitz, W. (2002) Bacterial ghosts as vaccine candidates for veterinary applications. J. Control. Release 85, 17–25.PubMedCrossRefGoogle Scholar
  158. 158.
    Kiknadze, G. P., Gadua, M. M., Tsereteli, E. V., Mchedlidze, L. S., and Birkadze, T. V. (1986) Efficiency of preventive treatment by phage preparations of children’s hospital salmonellosis, in Intestinal Infections (Kiknadze, G. P., ed.), Soviet Medicine, Tbilisi, GA, pp. 41–44.Google Scholar
  159. 159.
    Slopek, S., Weber-Dabrowska, B., Dabrowski, M., and Kucharewicz-Krukowska, A. (1987) Results of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch. Immunol. Ther. Exp. 35, 569–583.Google Scholar
  160. 160.
    Leverentz, B., Conway, W. S., Alavidze, Z., et al. (2001) Examination of bacteriophage as a biocontrol method for salmonella on fresh-cut fruit: a model study. J. Food Protect. 64, 1116–1121.Google Scholar
  161. 161.
    Garcia, P., Mendez, E., Garcia, E., Ronda, C., and Lopez, R. (1984) Biochemical characterization of a murein hydrolase induced by bacteriophage Dp-1 in Streptococcus pneumoniae: comparative study between bacteriophage-associated lysin and the host amidase. J. Bacteriol. 159, 793–796.PubMedGoogle Scholar
  162. 162.
    Brussow, H. and Hendrix, R. W. (2002) Phage genomics: small is beautiful. Cell 108, 13–16.PubMedCrossRefGoogle Scholar
  163. 163.
    Mead, P. S., Slutsker, L., Dietz, V., et al. (1999) Food-related illness and death in the United States. Emerg. Infect. Dis. 5, 607–625.PubMedCrossRefGoogle Scholar
  164. 164.
    Frenzen, P. D., Drake, A., Angulo, F. J., and Emerging Infections Program FoodNet Working Group (2005) Economic cost of illness due to Escherichia coli O157 infections in the United States. J. Food Protect. 68, 2623–2630.Google Scholar
  165. 165.
    Adamia, R. S., Matitashvili, E. A., Kvachadze, L. I., et al. (1990) The virulent bacteriophage IRA of Salmonella typhimurium: cloning of phage genes which are potentially lethal for the host cell. J. Basic Microbiol. 30, 707–716.PubMedCrossRefGoogle Scholar
  166. 166.
    Garcia, P., Garcia, E., Ronda, C., Lopez, R., and Tomasz, A. (1983) A phage-associated murein hydrolase in Streptococcus pneumoniae infected with bacteriophage Dp-1. J. Gen. Microbiol. 129, 489–497.PubMedGoogle Scholar
  167. 167.
    Nelson, D., Loomis, L., and Fischetti, V. A. (2001) Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. U. S. A. 98, 4107–4112.PubMedCrossRefGoogle Scholar
  168. 168.
    Schuch, R., Nelson, D., and Fischetti, V. A. (2002) A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418, 884–889.PubMedCrossRefGoogle Scholar
  169. 169.
    Casjens, S. R., E. B. Gilcrease, D. A. Winn-Stapley, P. Schicklmaier, H. Schmieger, M. L. Pedulla, M. E. Ford, J. M. Houtz, G. F. Hatfull, and R. W. Hendrix. 2005. The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. Journal of Bacteriology 187:1091–1104.PubMedCrossRefGoogle Scholar
  170. 170.
    Bullas LR, Mostaghimi AR, Arensdorf JJ, Rajadas PT, Zuccarelli AJ. 1991. Salmonella phage PSP3, another member of the P2-like phage group. Virology 185:918–921.PubMedCrossRefGoogle Scholar
  171. 171.
    Frost JA, Ward LR, Rowe B. 1989. Acquisition of a drug resistance plasmid converts Salmonella enteritidis phage type 4 to phage type 24. Epidemiol Infect. 103:243–248.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Andrew M. Kropinski
    • 1
    • 2
  • Alexander Sulakvelidze
    • 3
  • Paulina Konczy
    • 4
  • Cornelius Poppe
    • 5
  1. 1.Host and Pathogen Determinants, Laboratory for Foodborne ZoonosesPublic Health Agency of CanadaGuelphCanada
  2. 2.Department of Microbiology and ImmunologyQueen’s UniversityKingstonCanada
  3. 3.Intralytix, Inc.Baltimore
  4. 4.Laboratory for Foodborne ZoonosesPublic Health Agency of CanadaGuelphCanada
  5. 5.Laboratory for Foodborne ZoonosesPublic Health Agency of CanadaGuelphCanada

Personalised recommendations