Salmonella pp 235-273 | Cite as

Applications of Cell Imaging in Salmonella Research

  • Charlotte A. Perrett
  • Mark A. Jepson
Part of the Methods in Molecular Biology book series (MIMB, volume 394)


Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in both humans and warm-blooded animals. Understanding the mechanisms by which Salmonella induce disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type III secretion system (T3SS). Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second T3SS initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. These processes contribute to Salmonella entry into the host and the clinical symptoms of gastrointestinal and systemic infection. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopical methods to examine Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and confocal microscopy can reveal the juxtaposition of Salmonella, its products, and cellular components at high resolution. Simple light microscopy (LM) can also be used to investigate the interaction of bacteria with host cells and has advantages for live cell imaging, which enables detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on several LM techniques routinely used in our own research.

Key Words

Salmonella infection imaging microscope wide-field microscopy confocal laser scanning microscopy fluorescent staining live cell imaging. 


  1. 1.
    Finlay, B. B., Ruschkowski, S., and Dedhar, S. (1991) Cytoskeletal rearrangements accompanying Salmonella entry into epithelial cells. J. Cell Sci. 99(Pt 2), 283–296.PubMedGoogle Scholar
  2. 2.
    Galan, J. E. (2001) Salmonella interactions with host cells: type III secretion at work. Annu. Rev. Cell Dev. Biol. 17, 53–86.CrossRefPubMedGoogle Scholar
  3. 3.
    Clark, M. A., Hirst, B. H., and Jepson, M. A. (1998) Inoculum composition and Salmonella pathogenicity island 1 regulate M-cell invasion and epithelial destruction by Salmonella typhimurium. Infect. Immun. 66, 724–731.PubMedGoogle Scholar
  4. 4.
    Clark, M. A., Jepson, M. A., Simmons, N. L., and Hirst, B. H. (1994) Preferential interaction of Salmonella typhimurium with mouse Peyer’s patch M cells. Res. Microbiol. 145, 543–552.CrossRefPubMedGoogle Scholar
  5. 5.
    Jepson, M. A. and Clark, M. A. (2001) The role of M cells in Salmonella infection. Microbes Infect. 3, 1183–1190.CrossRefPubMedGoogle Scholar
  6. 6.
    Jones, B. D., Ghori, N., and Falkow, S. (1994) Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J. Exp. Med. 180, 15–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Waterman, S. R. and Holden, D. W. (2003) Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol. 5, 501–511.CrossRefPubMedGoogle Scholar
  8. 8.
    Patel, J. C. and Galan, J. E. (2005) Manipulation of the host actin cytoskeleton by Salmonella — all in the name of entry. Curr. Opin. Microbiol. 8, 10–15.CrossRefPubMedGoogle Scholar
  9. 9.
    Finlay, B. B. and Brumell, J. H. (2000) Salmonella interactions with host cells: in vitro to in vivo. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 623–631.CrossRefPubMedGoogle Scholar
  10. 10.
    Hueck, C. J. (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433.PubMedGoogle Scholar
  11. 11.
    Galan, J. E. and Collmer, A. (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322–1328.CrossRefPubMedGoogle Scholar
  12. 12.
    Hueck, C. J., Hantman, M. J., Bajaj, V., Johnston, C., Lee, C. A., and Miller, S. I. (1995) Salmonella typhimurium secreted invasion determinants are homologous to Shigella Ipa proteins. Mol. Microbiol. 18, 479–490.CrossRefPubMedGoogle Scholar
  13. 13.
    Shea, J. E., Hensel, M., Gleeson, C., and Holden, D. W. (1996) Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 93, 2593–2597.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhou, D., Mooseker, M. S., and Galan, J. E. (1999) Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283, 2092–2095.CrossRefPubMedGoogle Scholar
  15. 15.
    Jepson, M. A., Kenny, B., and Leard, A. D. (2001) Role of sipA in the early stages of Salmonella typhimurium entry into epithelial cells. Cell Microbiol. 3, 417–426.CrossRefPubMedGoogle Scholar
  16. 16.
    Galan, J. E. and Fu, Y. (2000) Modulation of actin cytoskeleton by Salmonella GTPase activating protein SptP. Methods Enzymol. 325, 496–504.CrossRefPubMedGoogle Scholar
  17. 17.
    Terebiznik, M. R., Vieira, O. V., Marcus, S. L., Slade, A., Yip, C. M., Trimble, W. S., Meyer, T., Finlay, B. B., and Grinstein, S. (2002) Elimination of host cell PtdIns(4,5)P(2) by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat. Cell Biol. 4, 766–773.CrossRefPubMedGoogle Scholar
  18. 18.
    Hernandez, L. D., Hueffer, K., Wenk, M. R., and Galan, J. E. (2004) Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304, 1805–1807.CrossRefPubMedGoogle Scholar
  19. 19.
    Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E., and Majerus, P. W. (1998) SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl. Acad. Sci. USA 95, 14057–14059.CrossRefPubMedGoogle Scholar
  20. 20.
    Bertelsen, L. S., Paesold, G., Marcus, S. L., Finlay, B. B., Eckmann, L., and Barrett, K. E. (2004) Modulation of chloride secretory responses and barrier function of intestinal epithelial cells by the Salmonella effector protein SigD. Am. J. Physiol. Cell Physiol. 287, C939–948.CrossRefPubMedGoogle Scholar
  21. 21.
    Finlay, B. B., Gumbiner, B., and Falkow, S. (1988) Penetration of Salmonella through a polarized Madin-Darby canine kidney epithelial cell monolayer. J. Cell Biol. 107, 221–230.CrossRefPubMedGoogle Scholar
  22. 22.
    Jepson, M. A., Lang, T. F., Reed, K. A., and Simmons, N. L. (1996) Evidence for a rapid, direct effect on epithelial monolayer integrity and transepithelial transport in response to Salmonella invasion. Pflugers Arch. 432, 225–233.CrossRefPubMedGoogle Scholar
  23. 23.
    Jepson, M. A., Collares-Buzato, C. B., Clark, M. A., Hirst, B. H., and Simmons, N. L. (1995) Rapid disruption of epithelial barrier function by Salmonella typhimurium is associated with structural modification of intercellular junctions. Infect. Immun. 63, 356–359.PubMedGoogle Scholar
  24. 24.
    Jepson, M. A., Schlecht, H. B., and Collares-Buzato, C. B. (2000) Localization of dysfunctional tight junctions in Salmonella enterica serovar typhimurium-infected epithelial layers. Infect. Immun. 68, 7202–7208.CrossRefPubMedGoogle Scholar
  25. 25.
    Tafazoli, F., Magnusson, K. E., and Zheng, L. (2003) Disruption of epithelial barrier integrity by Salmonella enterica serovar typhimurium requires geranylgeranylated proteins. Infect. Immun. 71, 872–881.CrossRefPubMedGoogle Scholar
  26. 26.
    Elewaut, D., DiDonato, J. A., Kim, J. M., Truong, F., Eckmann, L., and Kagnoff, M. F. (1999) NF-kappa B is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. J. Immunol. 163, 1457–1466.PubMedGoogle Scholar
  27. 27.
    Hobbie, S., Chen, L. M., Davis, R. J., and Galan, J. E. (1997) Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J. Immunol. 159, 5550–5559.PubMedGoogle Scholar
  28. 28.
    Gewirtz, A. T., Simon, P. O., Jr., Schmitt, C. K., Taylor, L. J., Hagedorn, C. H., O’Brien, A. D., Neish, A. S., and Madara, J. L. (2001) Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J. Clin. Invest. 107, 99–109.CrossRefPubMedGoogle Scholar
  29. 29.
    Hobert, M. E., Sands, K. A., Mrsny, R. J., and Madara, J. L. (2002) Cdc42 and Rac1 regulate late events in Salmonella typhimurium-induced interleukin-8 secretion from polarized epithelial cells. J. Biol. Chem. 277, 51025–51032.CrossRefPubMedGoogle Scholar
  30. 30.
    Hensel, M., Shea, J. E., Gleeson, C., Jones, M. D., Dalton, E., and Holden, D. W. (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403.CrossRefPubMedGoogle Scholar
  31. 31.
    Brown, N. F., Vallance, B. A., Coombes, B. K., Valdez, Y., Coburn, B. A., and Finlay, B. B. (2005) Salmonella pathogenicity island 2 is expressed prior to penetrating the Intestine. PLoS Pathog. 1, e32.CrossRefPubMedGoogle Scholar
  32. 32.
    Coburn, B., Li, Y., Owen, D., Vallance, B. A., and Finlay, B. B. (2005) Salmonella enterica serovar Typhimurium pathogenicity island 2 is necessary for complete virulence in a mouse model of infectious enterocolitis. Infect. Immun. 73, 3219–3227.CrossRefPubMedGoogle Scholar
  33. 33.
    Coombes, B. K., Coburn, B. A., Potter, A. A., et al. (2005) Analysis of the contribution of Salmonella pathogenicity islands 1 and 2 to enteric disease progression using a novel bovine ileal loop model and a murine model of infectious enterocolitis. Infect. Immun. 73, 7161–7169.CrossRefPubMedGoogle Scholar
  34. 34.
    Kubori, T., Matsushima, Y., Nakamura, D., Uralil, J., Lara-Tejero, M., Sukhan, A., Galan, J. E., and Aizawa, S. I. (1998) Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605.CrossRefPubMedGoogle Scholar
  35. 35.
    Kubori, T., Sukhan, A., Aizawa, S. I., and Galan, J. E. (2000) Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl. Acad. Sci. USA 97, 10225–10230.CrossRefPubMedGoogle Scholar
  36. 36.
    Daniell, S. J., Kocsis, E., Morris, E., Knutton, S., Booy, F. P., and Frankel, G. (2003) 3D structure of EspA filaments from enteropathogenic Escherichia coli. Mol. Microbiol. 49, 301–308.CrossRefPubMedGoogle Scholar
  37. 37.
    Ramboarina, S., Fernandes, P. J., Daniell, S., Islam, S., Simpson, P., Frankel, G., Booy, F., Donnenbery, M. S., and Matthews, S. (2005) Structure of the bundle-forming pilus from enteropathogenic Escherichia coli. J. Biol. Chem. 280, 40252–40260.CrossRefPubMedGoogle Scholar
  38. 38.
    Baumler, A. J. and Heffron, F. (1995) Identification and sequence analysis of lpfABCDE, a putative fimbrial operon of Salmonella typhimurium. J. Bacteriol. 177, 2087–2097.PubMedGoogle Scholar
  39. 39.
    Reed, K. A., Clark, M. A., Booth, T. A., et al. (1998) Cell-contact-stimulated formation of filamentous appendages by Salmonella typhimurium does not depend on the type III secretion system encoded by Salmonella pathogenicity island 1. Infect. Immun. 66, 2007–2017.PubMedGoogle Scholar
  40. 40.
    Ginocchio, C. C., Olmsted, S. B., Wells, C. L., and Galan, J. E. (1994) Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell 76, 717–724.CrossRefPubMedGoogle Scholar
  41. 41.
    Dufrene, Y. F. (2002) Atomic force microscopy, a powerful tool in microbiology. J. Bacteriol. 184, 5205–5213.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang, H. W., Chen, Y., Yang, H., et al. (2003) Ring-like pore structures of SecA: implication for bacterial protein-conducting channels. Proc. Natl. Acad. Sci. USA 100, 4221–4226.CrossRefPubMedGoogle Scholar
  43. 43.
    Ide, T., Laarmann, S., Greune, L., Schillers, H., Oberleithner, H., and Schmidt, M. A. (2001) Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol. 3, 669–679.CrossRefPubMedGoogle Scholar
  44. 44.
    Knutton, S. (2003) Microscopic methods to study STEC. Analysis of the attaching and effacing process. Methods Mol. Med. 73, 137–149.PubMedGoogle Scholar
  45. 45.
    Van Putten, J. P., Weel, J. F., and Grassme, H. U. (1994) Measurements of invasion by antibody labelling and electron microscopy. Methods Enzymol. 236, 420–437.CrossRefPubMedGoogle Scholar
  46. 46.
    Nunez, M. E., Martin, M. O., Chan, P. H., Duong, L. K., Sindhurakar, A. R., and Spain, E. M. (2005) Atomic force microscopy of bacterial communities. Methods Enzymol. 397, 256–268.CrossRefPubMedGoogle Scholar
  47. 47.
    Decho, A. W. and Kawaguchi, T. (1999) Confocal imaging of in situ natural microbial communities and their extracellular polymeric secretions using Nanoplast resin. Biotechniques 27, 1246–1252.PubMedGoogle Scholar
  48. 48.
    Bryers, J. D. (2001) Two-photon excitation microscopy for analyses of biofilm processes. Methods Enzymol. 337, 259–269.CrossRefPubMedGoogle Scholar
  49. 49.
    Neu, T. R., Kuhlicke, U., and Lawrence, J. R. (2002) Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms. Appl. Environ. Microbiol. 68, 901–909.CrossRefPubMedGoogle Scholar
  50. 50.
    Emerson, R. J. and Camesano, T. A. (2004) Nanoscale investigation of pathogenic microbial adhesion to a biomaterial. Appl. Environ. Microbiol. 70, 6012–6022.CrossRefPubMedGoogle Scholar
  51. 51.
    Stephens, D. J. and Allan, V. J. (2003) Light microscopy techniques for live cell imaging. Science 300, 82–86.CrossRefPubMedGoogle Scholar
  52. 52.
    White, N. S. and Errington, R. J. (2005) Fluorescence techniques for drug delivery research: theory and practice. Adv. Drug Deliv. Rev. 57, 17–42.CrossRefPubMedGoogle Scholar
  53. 53.
    Buda, A., Sands, C., and Jepson, M. A. (2005) Use of fluorescence imaging to investigate the structure and function of intestinal M cells. Adv. Drug Deliv. Rev. 57, 123–134.CrossRefPubMedGoogle Scholar
  54. 54.
    Jepson, M. A. (2006) Confocal or wide-field? A guide to selecting appropriate methods for cell imaging, in Methods Express: Cell Imaging, Scion Publishing Ltd (UK), pp. 17–48.Google Scholar
  55. 55.
    Pawley, J. (ed.) (1995) Handbook of Biological Confocal Microscopy. 2nd edn, Plenum Press New York.Google Scholar
  56. 56.
    Sheppard, C. and Shotton, D. (1997) Confocal Laser Scanning Microscopy, Bios Scientific Publishers, Oxford, UK.Google Scholar
  57. 57.
    Shaner, N. C., Sanger, J. W., and Sanger, J. M. (2005) Actin and alpha-actinin dynamics in the adhesion and motility of EPEC and EHEC on host cells. Cell Motil. Cytoskeleton 60, 104–120.CrossRefPubMedGoogle Scholar
  58. 58.
    Swedlow, J. R., Hu, K., Andrews, P. D., Roos, D. S., and Murray, J. M. (2002) Measuring tubulin content in Toxoplasma gondii: a comparison of laser-scanning confocal and wide-field fluorescence microscopy. Proc. Natl. Acad. Sci. USA 99, 2014–2019.CrossRefPubMedGoogle Scholar
  59. 59.
    Takeuchi, A. (1967) Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am. J. Pathol. 50, 109–136.PubMedGoogle Scholar
  60. 60.
    Francis, C. L., Starnbach, M. N., and Falkow, S. (1992) Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction with Salmonella typhimurium grown under low-oxygen conditions. Mol. Microbiol. 6, 3077–3087.CrossRefPubMedGoogle Scholar
  61. 61.
    Jepson, M. A. and Clark, M. A. (1998) Studying M cells and their role in infection. Trends Microbiol. 6, 359–365.CrossRefPubMedGoogle Scholar
  62. 62.
    Clark, M. A., Reed, K. A., Lodge, J., Stephen, J., Hirst, B. H., and Jepson, M. A. (1996) Invasion of murine intestinal M cells by Salmonella typhimurium inv mutants severely deficient for invasion of cultured cells. Infect. Immun. 64, 4363–4368.PubMedGoogle Scholar
  63. 63.
    Monaghan, P., Watson, P. R., Cook, H., Scott, L., Wallis, T. S., and Robertson, D. (2001) An improved method for preparing thick sections for immuno/histochemistry and confocal microscopy and its use to identify rare events. J. Microsc. 203, 223–226.CrossRefPubMedGoogle Scholar
  64. 64.
    Richter-Dahlfors, A., Buchan, A. M., and Finlay, B. B. (1997) Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J. Exp. Med. 186, 569–580.CrossRefPubMedGoogle Scholar
  65. 65.
    Salcedo, S. P., Noursadeghi, M., Cohen, J., and Holden, D. W. (2001) Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell Microbiol. 3, 587–597.CrossRefPubMedGoogle Scholar
  66. 66.
    Salcedo, S. P. and Holden, D. W. (2003) SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO J. 22, 5003–5014.CrossRefPubMedGoogle Scholar
  67. 67.
    La Ragione, R. M., Cooley, W. A., Velge, P., Jepson, M. A., and Woodward, M. J. (2003) Membrane ruffling and invasion of human and avian cell lines is reduced for aflagellate mutants of Salmonella enterica serotype Enteritidis. Int. J. Med. Microbiol. 293, 261–272.CrossRefPubMedGoogle Scholar
  68. 68.
    Jepson, M. A., Pellegrin, S., Peto, L., et al. (2003) Synergistic roles for the Map and Tir effector molecules in mediating uptake of enteropathogenic Escherichia coli (EPEC) into non-phagocytic cells. Cell Microbiol. 5, 773–783.CrossRefPubMedGoogle Scholar
  69. 69.
    Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R., and Galan, J. E. (1998) S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826.CrossRefPubMedGoogle Scholar
  70. 70.
    Baumler, A. J., Tsolis, R. M., and Heffron, F. (1996) The lpf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer’s patches. Proc. Natl. Acad. Sci. USA 93, 279–283.CrossRefPubMedGoogle Scholar
  71. 71.
    Freese, H. M., Karsten, U., and Schumann, R. (2006) Bacterial abundance, activity, and viability in the eutrophic River Warnow, northeast Germany. Microb. Ecol. 51, 117–127CrossRefPubMedGoogle Scholar
  72. 72.
    Knodler, L. A., Bestor, A., Ma, C., et al. (2005) Cloning vectors and fluorescent proteins can significantly inhibit Salmonella enterica virulence in both epithelial cells and macrophages: implications for bacterial pathogenesis studies. Infect. Immun. 73, 7027–7031.CrossRefPubMedGoogle Scholar
  73. 73.
    Wendland, M. and Bumann, D. (2002) Optimization of GFP levels for analyzing Salmonella gene expression during an infection. FEBS Lett. 521, 105–108.CrossRefPubMedGoogle Scholar
  74. 74.
    Hautefort, I., Proenca, M. J., and Hinton, J. C. (2003) Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. Appl. Environ. Microbiol. 69, 7480–7491.CrossRefPubMedGoogle Scholar
  75. 75.
    Valdivia, R. H. and Falkow, S. (1996) Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. 22, 367–378.CrossRefPubMedGoogle Scholar
  76. 76.
    Bumann, D. (2002) Examination of Salmonella gene expression in an infected mammalian host using the green fluorescent protein and two-colour flow cytometry. Mol. Microbiol. 43, 1269–1283.CrossRefPubMedGoogle Scholar
  77. 77.
    Buchmeier, N. A. and Libby, S. J. (1997) Dynamics of growth and death within a Salmonella typhimurium population during infection of macrophages. Can. J. Microbiol. 43, 29–34.CrossRefPubMedGoogle Scholar
  78. 78.
    Francis, C. L., Ryan, T. A., Jones, B. D., Smith, S. J., and Falkow, S. (1993) Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 364, 639–642.CrossRefPubMedGoogle Scholar
  79. 79.
    Reed, K. A., Booth, T. A., Hirst, B. H., and Jepson, M. A. (1996) Promotion of Salmonella typhimurium adherence and membrane ruffling in MDCK epithelia by staurosporine. FEMS Microbiol. Lett. 145, 233–238.CrossRefPubMedGoogle Scholar
  80. 80.
    Criss, A. K., Ahlgren, D. M., Jou, T. S., McCormick, B. A., and Casanova, J. E. (2001) The GTPase Rac1 selectively regulates Salmonella invasion at the apical plasma membrane of polarized epithelial cells. J. Cell Sci. 114, 1331–1341.PubMedGoogle Scholar
  81. 81.
    Raffatellu, M., Wilson, R. P., Chessa, D., Andrews-Polymenis, H., Tran, Q. T., Lawhon, S., Khare, S., Adams, L. G., and Baumler, A. J. (2005) SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium invasion of epithelial cells. Infect. Immun. 73, 146–154.CrossRefPubMedGoogle Scholar
  82. 82.
    Clark, M. A., Hirst, B. H., and Jepson, M. A. (1998) M-cell surface beta1 integrin expression and invasin-mediated targeting of Yersinia pseudotuberculosis to mouse Peyer’s patch M cells. Infect. Immun. 66, 1237–1243.PubMedGoogle Scholar
  83. 83.
    Jepson, M. A., Clark, M. A., Simmons, N. L., and Hirst, B. H. (1993) Actin accumulation at sites of attachment of indigenous apathogenic segmented filamentous bacteria to mouse ileal epithelial cells. Infect. Immun. 61, 4001–4004.PubMedGoogle Scholar
  84. 84.
    Cain, R. J., Hayward, R. D., and Koronakis, V. (2004) The target cell plasma membrane is a critical interface for Salmonella cell entry effector-host interplay. Mol. Microbiol. 54, 887–904.CrossRefPubMedGoogle Scholar
  85. 85.
    Pattni, K., Jepson, M., Stenmark, H., and Banting, G. (2001) A PtdIns(3)P-specific probe cycles on and off host cell membranes during Salmonella invasion of mammalian cells. Curr. Biol. 11, 1636–1642.CrossRefPubMedGoogle Scholar
  86. 86.
    Brumell, J. H., Tang, P., Mills, S. D., and Finlay, B. B. (2001) Characterization of Salmonella-induced filaments (Sifs) reveals a delayed interaction between Salmonella-containing vacuoles and late endocytic compartments. Traffic 2, 643–653.CrossRefPubMedGoogle Scholar
  87. 87.
    Meresse, S., Unsworth, K. E., Habermann, A., Griffiths, G., Fang, F., Martinez-Lorenzo, M. J., Waterman, S. R., Gorvel, J. P., and Holden, D. W. (2001) Remodelling of the actin cytoskeleton is essential for replication of intravacuolar Salmonella. Cell Microbiol. 3, 567–577.CrossRefPubMedGoogle Scholar
  88. 88.
    Unsworth, K. E., Way, M., McNiven, M., Machesky, L., and Holden, D. W. (2004) Analysis of the mechanisms of Salmonella-induced actin assembly during invasion of host cells and intracellular replication. Cell Microbiol. 6, 1041–1055.CrossRefPubMedGoogle Scholar
  89. 89.
    Kimbrough, T. G. and Miller, S. I. (2000) Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc. Natl. Acad. Sci. USA 97, 11008–11013.CrossRefPubMedGoogle Scholar
  90. 90.
    Brumell, J. H., Kujat-Choy, S., Brown, N. F., Vallance, B. A., Knodler, L. A., and Finlay, B. B. (2003) SopD2 is a novel type III secreted effector of Salmonella typhimurium that targets late endocytic compartments upon delivery into host cells. Traffic 4, 36–48.CrossRefPubMedGoogle Scholar
  91. 91.
    Brumell, J. H., Goosney, D. L., and Finlay, B. B. (2002) SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic 3, 407–415.CrossRefPubMedGoogle Scholar
  92. 92.
    Schlumberger, M. C., Muller, A. J., Ehrbar, K., et al. (2005) Real-time imaging of type III secretion: Salmonella SipA injection into host cells. Proc. Natl. Acad. Sci. USA 102, 12548–12553.CrossRefPubMedGoogle Scholar
  93. 93.
    Enninga, J., Mounier, J., Sansonetti, P., and Tran Van Nhieu, G. (2005) Secretion of type III effectors into host cells in real time. Nat. Methods 2, 959–965.CrossRefPubMedGoogle Scholar
  94. 94.
    Charpentier, X. and Oswald, E. (2004) Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter. J. Bacteriol. 186, 5486–5495.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Charlotte A. Perrett
    • 1
  • Mark A. Jepson
    • 1
  1. 1.Department of Biochemistry, School of Medical SciencesUniversity of BristolBristolUK

Personalised recommendations