Neuroprotection Methods and Protocols pp 55-66

Part of the Methods in Molecular Biology book series (MIMB, volume 399)

Organotypic Entorhino-Hippocampal Slice Cultures—A Tool to Study the Molecular and Cellular Regulation of Axonal Regeneration and Collateral Sprouting In Vitro

  • Domenico Del Turco
  • Thomas Deller


Organotypic slice cultures of the brain are widely used as a tool to study fundamental questions in neuroscience. In this chapter, we focus on a protocol based on organotypic slice cultures of mouse entorhinal cortex and hippocampus that can be employed to study axonal regeneration and collateral sprouting in the central nervous system in vitro. Using pharmacological as well as genetic approaches, axonal regeneration and sprouting can be influenced, and some of the molecular and cellular mechanisms involved in these processes can be identified. The protocol describes in detail (1) the generation of organotypic entorhino-hippocampal slice cultures, (2) the conditions needed for the analysis of axonal regeneration and collateral sprouting, respectively, (3) the lesioning technique, (4) tracing techniques to visualize regenerating entorhinal axons, and (5) an immunohistochemical technique to visualize sprouting fibers.

Key Words

Hippocampus dentate gyrus entorhinal cortex lesion mossy cells axonal regeneration axonal sprouting plasticity calretinin NeuN mini-ruby 


  1. 1.
    Frotscher, M., Zafirov, S., and Heimrich, B. (1995). Development of identified neuronal types and of specific synaptic connections in slice cultures of rat hippocampus. Prog. Neurobiol. 45, vii–xxviii.CrossRefGoogle Scholar
  2. 2.
    Del Rio, J. A., Heimrich, B., Borrell, V., Forster, E., Drakew, A., Alcantara, S., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., Derer, P., Frotscher, M., and Soriano, E. (1997). A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385, 70–74.CrossRefGoogle Scholar
  3. 3.
    Dusart, I., Airaksinen, M. S., and Sotelo, C. (1997). Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. J. Neurosci. 17, 3710–3726.Google Scholar
  4. 4.
    Gahwiler, B. H., Capogna, M., Debanne, D., McKinney, R. A., and Thompson, S. M. (1997). Organotypic slice cultures: a technique has come of age. Trends Neurosci. 20, 471–477.CrossRefGoogle Scholar
  5. 5.
    Frotscher, M., Drakew, A., and Heimrich, B. (2000). Role of afferent innervation and neuronal activity in dendritic development and spine maturation of fascia dentata granule cells. Cereb. Cortex 10, 946–951.CrossRefGoogle Scholar
  6. 6.
    Gimsa, U., Peter, S. V., Lehmann, K., Bechmann, I., and Nitsch, R. (2000). Axonal damage induced by invading T cells in organotypic central nervous system tissue in vitro: involvement of microglial cells. Brain Pathol. 10, 365–377.CrossRefGoogle Scholar
  7. 7.
    Kapfhammer, J. P. (2004). Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Prog. Histochem. Cytochem. 39, 131–182.CrossRefGoogle Scholar
  8. 8.
    Nagerl, U. V., Eberhorn, N., Cambridge, S. B., and Bonhoeffer, T. (2004). Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44, 759–767.CrossRefGoogle Scholar
  9. 9.
    Raineteau, O., Rietschin, L., Gradwohl, G., Guillemot, F., and Gahwiler, B. H. (2004). Neurogenesis in hippocampal slice cultures. Mol. Cell Neurosci. 26, 241–250.CrossRefGoogle Scholar
  10. 10.
    Duport, S., Robert, F., Muller, D., Grau, G., Parisi, L., and Stoppini, L. (1998). An in vitro blood-brain barrier model: cocultures between endothelial cells and organotypic brain slice cultures. Proc. Natl. Acad. Sci. U. S. A. 95, 1840–1845.CrossRefGoogle Scholar
  11. 11.
    Dehghani, F., Conrad, A., Kohl, A., Korf, H. W., and Hailer, N. P. (2004). Clodronate inhibits the secretion of proinflammatory cytokines and NO by isolated microglial cells and reduces the number of proliferating glial cells in excitotoxically injured organotypic hippocampal slice cultures. Exp. Neurol. 189, 241–251.CrossRefGoogle Scholar
  12. 12.
    Radojevic, V. and Kapfhammer, J. P. (2004). Repair of the entorhino-hippocampal projection in vitro. Exp. Neurol. 188, 11–19.CrossRefGoogle Scholar
  13. 13.
    Huuskonen, J., Suuronen, T., Miettinen, R., van Groen, T., and Salminen, A. (2005). A refined in vitro model to study inflammatory responses in organotypic membrane culture of postnatal rat hippocampal slices. J. Neuroinflammation 2, 25.CrossRefGoogle Scholar
  14. 14.
    Noraberg, J., Poulsen, F. R., Blaabjerg, M., Kristensen, B. W., Bonde, C., Montero, M., Meyer, M., Gramsbergen, J. B., and Zimmer, J. (2005). Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair. Curr. Drug Targets. CNS. Neurol. Disord. 4, 435–452.CrossRefGoogle Scholar
  15. 15.
    Stoppini, L., Buchs, P. A., and Muller, D. (1991). A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182.CrossRefGoogle Scholar
  16. 16.
    Bergold, P. J. and Casaccia-Bonnefil, P. (1997). Preparation of organotypic hippocampal slice cultures using the membrane filter method. Methods Mol. Biol. 72, 15–22.Google Scholar
  17. 17.
    Stoppini, L., Buchs, P. A., and Muller, D. (1993). Lesion-induced neurite sprouting and synapse formation in hippocampal organotypic cultures. Neuroscience 57, 985–994.CrossRefPubMedGoogle Scholar
  18. 18.
    Diekmann, S., Nitsch, R., and Ohm, T. G. (1994). The organotypic entorhinalhippocampal complex slice culture of adolescent rats. A model to study transcellular changes in a circuit particularly vulnerable in neurodegenerative disorders. J. Neural Transm. Suppl. 44, 61–71.Google Scholar
  19. 19.
    Li, D., Field, P. M., and Raisman, G. (1996). Connectional specification of regenerating entorhinal projection neuron classes cannot be overridden by altered target availability in postnatal organotypic slice co-culture. Exp. Neurol. 142, 151–160.CrossRefPubMedGoogle Scholar
  20. 20.
    Stoppini, L., Parisi, L., Oropesa, C., and Muller, D. (1997). Sprouting and functional recovery in co-cultures between old and young hippocampal organotypic slices. Neuroscience 80, 1127–1136.CrossRefPubMedGoogle Scholar
  21. 21.
    Prang, P., Del Turco, D., and Deller, T. (2003). Associational sprouting in the mouse fascia dentata after entorhinal lesion in vitro. Brain Res. 978, 205–212.CrossRefPubMedGoogle Scholar
  22. 22.
    van Groen, T., Miettinen, P., and Kadish, I. (2003). The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation. Hippocampus 13, 133–149.CrossRefPubMedGoogle Scholar
  23. 23.
    Heimrich, B. and Frotscher, M. (1993). Slice cultures as a model to study entorhinal-hippocampal interaction. Hippocampus 3 Spec No, 11–17.PubMedGoogle Scholar
  24. 24.
    Li, D., Field, P. M., Yoshioka, N., and Raisman, G. (1994). Axons regenerate with correct specificity in horizontal slice culture of the postnatal rat entorhinohippocampal system. Eur. J. Neurosci. 6, 1026–1037.CrossRefPubMedGoogle Scholar
  25. 25.
    Kluge, A., Hailer, N. P., Horvath, T. L., Bechmann, I. and Nitsch, R. (1998). Tracing of the entorhinal-hippocampal pathway in vitro. Hippocampus 8, 57–68.CrossRefPubMedGoogle Scholar
  26. 26.
    Prang, P., Del Turco, D., and Kapfhammer, J. P. (2001). Regeneration of entorhinal fibers in mouse slice cultures is age dependent and can be stimulated by NT-4,GDNF, and modulators of G-proteins and protein kinase C. Exp. Neurol. 169, 135–147.CrossRefPubMedGoogle Scholar
  27. 27.
    Muller, D., Djebbara-Hannas, Z., Jourdain, P., Vutskits, L., Durbec, P., Rougon, G., and Kiss, J. Z. (2000). Brain-derived neurotrophic factor restores long-term potentiation in polysialic acid-neural cell adhesion molecule-deficient hippocampus. Proc. Natl. Acad. Sci. U. S. A. 97, 4315–4320.CrossRefPubMedGoogle Scholar
  28. 28.
    Schwab, M. H., Bartholomae, A., Heimrich, B., Feldmeyer, D., Druffel-Augustin, S., Goebbels, S., Naya, F. J., Zhao, S., Frotscher, M., Tsai, M. J., and Nave, K. A. (2000). Neuronal basic helix-loop-helix proteins (NEX and BETA2/Neuro D) regulate terminal granule cell differentiation in the hippocampus. J. Neurosci. 20, 3714–3724.PubMedGoogle Scholar
  29. 29.
    Schrenk, K., Kapfhammer, J. P., and Metzger, F. (2002). Altered dendritic development of cerebellar Purkinje cells in slice cultures from protein kinase Cgammadeficient mice. Neuroscience 110, 675–689.CrossRefPubMedGoogle Scholar
  30. 30.
    Teter, B., Xu, P. T., Gilbert, J. R., Roses, A. D., Galasko, D., and Cole, G. M. (2002). Defective neuronal sprouting by human apolipoprotein E4 is a gain-ofnegative function. J. Neurosci. Res. 68, 331–336.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhao, S., Forster, E., Chai, X., and Frotscher, M. (2003). Different signals control laminar specificity of commissural and entorhinal fibers to the dentate gyrus. J. Neurosci. 23, 7351–7357.PubMedGoogle Scholar
  32. 32.
    Sole, M., Fontana, X., Gavin, R., Soriano, E., and Del Rio, J. A. (2004). Bcl-2 overexpression does not promote axonal regeneration of the entorhino-hippocampal connections in vitro after axotomy. Brain Res. 1020, 204–209.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhao, S., Chai, X., Forster, E., and Frotscher, M. (2004). Reelin is a positional signal for the lamination of dentate granule cells. Development 131, 5117–5125.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhao, S., Chai, X., Bock, H. H., Brunne, B., Forster, E., and Frotscher, M. (2006). Rescue of the reeler phenotype in the dentate gyrus by wild-type coculture is mediated by lipoprotein receptors for reelin and disabled 1. J. Comp Neurol. 495, 1–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Frotscher, M. and Heimrich, B. (1993). Formation of layer-specific fiber projections to the hippocampus in vitro. Proc. Natl. Acad. Sci. U. S. A. 90, 10400–10403.CrossRefPubMedGoogle Scholar
  36. 36.
    Blasco-Ibanez, J. M. and Freund, T. F. (1997). Distribution, ultrastructure, and connectivity of calretinin-immunoreactive mossy cells of the mouse dentate gyrus. Hippocampus 7, 307–320.CrossRefPubMedGoogle Scholar
  37. 37.
    Del Turco, D., Woods, A. G., Gebhardt, C., Phinney, A. L., Jucker, M., Frotscher, M., and Deller, T. (2003). Comparison of commissural sprouting in the mouse and rat fascia dentata after entorhinal cortex lesion. Hippocampus 13, 685–699.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Domenico Del Turco
    • 1
  • Thomas Deller
    • 1
  1. 1.Institute of Clinical NeuroanatomyJ. W. Goethe-UniversityFrankfurtGermany

Personalised recommendations