Advertisement

The Stem Cells as a Potential Treatment for Neurodegeneration

  • Ferrari Daniela
  • Angelo Luigi Vescovi
  • Daniele Bottai
Part of the Methods in Molecular Biology book series (MIMB, volume 399)

Abstract

Cell degeneration and death, be it extensive and widespread, such as in metabolic disorders, or focal and selective as in Parkinson’s disease (PD), is the underlying feature of many neurological diseases. Thus, the replacement of cells lost by injury or disease has become a central tenet in strategies aiming at the development of novel therapeutic approaches for neurodegenerative disorders. In addition to the in vivo recruitment of endogenous cells, which is now emerging as a promising novel strategy, the transplantation of new, exogenously generated brain cells is probably the most extensively studied methodology for cell replacement in the central nervous system, with the initial experimental clinical studies in PD dating back to the early 1970s (Bjorklund, A. and Stenevi, U., 1984, Intracerebral neural implants: neuronal replacement and reconstruction of damaged circuitries. Annu Rev Neurosci 7, 279–308; Snyder, B. J. and Olanow, C. W., 2005, Stem cell treatment for Parkinson’s disease: an update for 2005. Curr Opin Neurol 18, 376–85). The need to generate the cells to be transplanted in large quantities and in a reproducible, steady, and safe fashion has long represented one of the major issues in this field, regardless of whether one was trying to produce specific cell subtypes or uncommitted and highly plastic neural precursors, which would respond to local, instructive cues, upon transplantation into the damaged area. Neural stem cells (NSCs), with their capacity for long-term expansion in vitro and their extensive functional stability and plasticity, allow now for the establishment of cultures of mature neural cells as well as highly undifferentiated precursors and are emerging as one of the most amenable cell sources for neural transplantation (Gage, F. H., 2000, Mammalian neural stem cells. Science 287, 1433–8; McKay, R., 1997, Stem cells in the central nervous system. Science 276, 66–71). This chapter illustrates the basic aspect of the handling and preparation of NSCs for experimental transplantation in two animal models of neurodegenerative disorders, namely, postcontusion spinal cord injury and multiple sclerosis.

Key Words

Neural stem cell transplantation spinal cord injury multiple sclerosis stereotaxic endovenous injection intraspinal injection intracranial injection 

References

  1. 1.
    Gage, F. H. (2000) Mammalian neural stem cells. Science 287, 1433–8.CrossRefPubMedGoogle Scholar
  2. 2.
    McKay, R. (1997) Stem cells in the central nervous system. Science 276, 66–71.CrossRefPubMedGoogle Scholar
  3. 3.
    Lois, C. and Alvarez-Buylla, A. (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Gritti, A., Cova, L., Parati, E. A., Galli, R., and Vescovi, A. L. (1995) Basic fibroblast growth factor supports the proliferation of epidermal growth factorgenerated neuronal precursor cells of the adult mouse CNS. Neurosci Lett 185, 151–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Gritti, A., Parati, E. A., Cova, L., Frolichsthal, P., Galli, R., Wanke, E., Faravelli, L., Morassutti, D. J., Roisen, F., Nickel, D. D., and Vescovi, A. L. (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 16, 1091–100.PubMedGoogle Scholar
  6. 6.
    Galli, R., Gritti, A., Bonfanti, L., and Vescovi, A. L. (2003) Neural stem cells: an overview. Circ Res 92, 598–608.CrossRefPubMedGoogle Scholar
  7. 7.
    Lois, C. and Alvarez-Buylla, A. (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90, 2074–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Alvarez-Buylla, A. and Lois, C. (1995) Neuronal stem cells in the brain of adult vertebrates. Stem Cells 13, 263–72.CrossRefPubMedGoogle Scholar
  9. 9.
    Reynolds, B. A. and Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–10.CrossRefPubMedGoogle Scholar
  10. 10.
    Galli, R., Fiocco, R., De Filippis, L., Muzio, L., Gritti, A., Mercurio, S., Broccoli, V., Pellegrini, M., Mallamaci, A., and Vescovi, A. L. (2002) Emx2 regulates the proliferation of stem cells of the adult mammalian central nervous system. Dev Suppl 129, 1633–44.Google Scholar
  11. 11.
    Gritti, A., Frolichsthal-Schoeller, P., Galli, R., Parati, E. A., Cova, L., Pagano, S. F., Bjornson, C. R., and Vescovi, A. L. (1999) Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J Neurosci 19, 3287–97.PubMedGoogle Scholar
  12. 12.
    Gritti, A., Bonfanti, L., Doetsch, F., Caille, I., Alvarez-Buylla, A., Lim, D. A., Galli, R., Verdugo, J. M., Herrera, D. G., and Vescovi, A. L. (2002) Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci 22, 437–45.PubMedGoogle Scholar
  13. 13.
    Reynolds, B. A. and Rietze, R. L. (2005) Neural stem cells and neurospheres—re-evaluating the relationship. Nat Methods 2, 333–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Vescovi, A. L., Gritti, A., Galli, R., and Parati, E. A. (1999) Isolation and intracerebral grafting of nontransformed multipotential embryonic human CNS stem cells. J Neurotrauma 16, 689–93.CrossRefPubMedGoogle Scholar
  15. 15.
    Svendsen, C. N., Caldwell, M. A., and Ostenfeld, T. (1999) Human neural stem cells: isolation, expansion and transplantation. Brain Pathol 9, 499–513.CrossRefPubMedGoogle Scholar
  16. 16.
    Carpenter, M. K., Cui, X., Hu, Z. Y., Jackson, J., Sherman, S., Seiger, A., and Wahlberg, L. U. (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol 158, 265–78.CrossRefPubMedGoogle Scholar
  17. 17.
    Goldman, S. A. and Sim, F. (2005) Neural progenitor cells of the adult brain. Novartis Found Symp 265, 66–80; discussion 82–97.CrossRefPubMedGoogle Scholar
  18. 18.
    Bottai, D., Fiocco, R., Gelain, F., Defilippis, L., Galli, R., Gritti, A., and Vescovi, L. A. (2003) Neural stem cells in the adult nervous system. J Hematother Stem Cell Res 12, 655–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Pluchino, S., Quattrini, A., Brambilla, E., Gritti, A., Salani, G., Dina, G., Galli, R., Del Carro, U., Amadio, S., Bergami, A., Furlan, R., Comi, G., Vescovi, A. L., and Martino, G. (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422, 688–94.CrossRefPubMedGoogle Scholar
  20. 20.
    Pluchino, S., Zanotti, L., Rossi, B., Brambilla, E., Ottoboni, L., Salani, G., Martinello, M., Cattalini, A., Bergami, A., Furlan, R., Comi, G., Constantin, G., and Martino, G. (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436, 266–71.CrossRefPubMedGoogle Scholar
  21. 21.
    Reynolds, B. A., Tetzlaff, W., and Weiss, S. (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12, 4565–74.PubMedGoogle Scholar
  22. 22.
    Kwon, B. K., Oxland, T. R., and Tetzlaff, W. (2002) Animal models used in spinal cord regeneration research. Spine 27, 1504–10.CrossRefPubMedGoogle Scholar
  23. 23.
    Martino, G. and Hartung, H. P. (1999) Immunopathogenesis of multiple sclerosis: the role of T cells. Curr Opin Neurol 12, 309–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Hemmer, B., Archelos, J. J., and Hartung, H. P. (2002) New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 3, 291–301.CrossRefPubMedGoogle Scholar
  25. 25.
    Kuchroo, V. K., Anderson, A. C., Waldner, H., Munder, M., Bettelli, E., and Nicholson, L. B. (2002) T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu Rev Immunol 20, 101–23.CrossRefPubMedGoogle Scholar
  26. 26.
    Lebar, R., Lubetzki, C., Vincent, C., Lombrail, P., and Boutry, J. M. (1986) The M2 autoantigen of central nervous system myelin, a glycoprotein present in oligodendrocyte membrane. Clin Exp Immunol 66, 423–34.PubMedGoogle Scholar
  27. 27.
    Slavin, A., Ewing, C., Liu, J., Ichikawa, M., Slavin, J., and Bernard, C. C. (1998) Induction of a multiple sclerosis-like disease in mice with an immunodominant epitope of myelin oligodendrocyte glycoprotein. Autoimmunity 28, 109–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Ueda, H., Amano, H., Shiomi, H., and Takagi, H. (1979) Comparison of the analgesic effects of various opioid peptides by a newly devised intracisternal injection technique in conscious mice. Eur J Pharmacol 56, 265–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Furlan, R., Pluchino, S., Marconi, P. C., and Martino, G. (2003) Cytokine gene delivery into the central nervous system using intrathecally injected nonreplicative viral vectors. Methods Mol Biol 215, 279–89.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Ferrari Daniela
    • 1
  • Angelo Luigi Vescovi
    • 2
  • Daniele Bottai
    • 1
    • 3
  1. 1.Stem Cell Research InstituteDIBIT Fondazione Centro San Raffaele del Monte TaborMilanItaly
  2. 2.Department of Biotechnology and BiosciencesUniversity Milan BicoccaMilanItaly
  3. 3.Department of Biotechnology and BiosciencesUniversity Milan BicoccaMilanItaly

Personalised recommendations