Methods for Generation and Analysis of Fluorescent Protein-Tagged Maize Lines

  • Amitabh Mohanty
  • Yan Yang
  • Anding Luo
  • Anne W. Sylvester
  • David Jackson
Part of the Methods in Molecular Biology™ book series (MIMB, volume 526)

Summary

The use of fluorescent proteins to localize gene products in living cells has revolutionized cell biology. Although maize has excellent genetics resources, the use of fluorescent proteins in maize cell biology has not been well developed. To date, protein localization in this species has mostly been performed using immunolocalization with specific antibodies, when available, or by overexpression of fluorescent protein fusions. Localization of tagged proteins using native regulatory elements has the advantage that it is less likely to generate artifactual results, and also reports tissue-specific expression patterns for the gene of interest. Fluorescent protein tags can also be used for other applications, such as protein–protein interaction studies and purification of protein complexes. This chapter describes methods to generate and characterize fluorescent protein-tagged maize lines driven by their native regulatory elements.

Keywords:

Confocal microscopy Gateway cloning™ Green fluorescent protein (GFP) Yellow FP (YFP) Red FP (RFP) Maize Native regulatory elements Protein localization Tissue-specific expression Triple-template PCR (TTPCR) 

References

  1. 1.
    Chalfie, M., Tu, Y., Euskirchen, G., Ward William, W. and Prasher Douglas, C. (1994) Green fluorescent protein as a marker for gene expression. Science 263 802–805.PubMedCrossRefGoogle Scholar
  2. 2.
    Shaner, N. C., Steinbach, P. A. and Tsien, R. Y. (2005) A guide to choosing fluorescent proteins. Nat. Meth. 2(12) 905–909.CrossRefGoogle Scholar
  3. 3.
    Mathur, J., (2007) The illuminated plant cell. Trends Plant Sci. 12(11) 506–513.PubMedCrossRefGoogle Scholar
  4. 4.
    Patterson, G. H. and Lippincott-Schwartz, J. (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science. 297(5588) 1873–1877.PubMedCrossRefGoogle Scholar
  5. 5.
    Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A. and Tsien, R. Y. (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276 29188–29194.PubMedCrossRefGoogle Scholar
  6. 6.
    Boute, N., Jockers, R. and Issad, T. (2002) The use of resonance energy transfer in high-throughput screening: Bret versus fret. Trends Pharmacol. Sci. 23 351–354.PubMedCrossRefGoogle Scholar
  7. 7.
    Cutler, S. R., Ehrhardt, D. W., Griffitts, J. S. and Somerville, C. R. (2000) Random gfp::Cdna fusions enable visualization of subcellular structures in cells of arabidopsis at a high frequency. Proc. Natl. Acad. Sci.USA. 97 3718–3723.PubMedCrossRefGoogle Scholar
  8. 8.
    Koroleva, O. A., Tomlinson, M. L., Leader, D., Shaw, P. and Doonan, J. H. (2005) High-throughput protein localization in arabidopsis using Agrobacterium-mediated transient expression of gfp-orf fusions. Plant J. 41 162–174.PubMedCrossRefGoogle Scholar
  9. 9.
    Tian, G.-W., Mohanty, A., Chary, S. N., Li, S., Paap, B., Drakakaki, G., Kopec, C. D., Li, J., Ehrhardt, D., Jackson, D., Rhee, S. Y., Raikhel, N. V. and Citovsky, V. (2004) High-throughput fluorescent tagging of full-length arabidopsis gene products in planta. Plant Physiol. 135 25–38.PubMedCrossRefGoogle Scholar
  10. 10.
    Williams, P., Hardeman, K., Fowler, J. and Rivin, C. (2006) Divergence of duplicated genes in maize: Evolution of contrasting targeting information for enzymes in the porphyrin pathway. Plant J. 45 727–739.PubMedCrossRefGoogle Scholar
  11. 11.
    Saleh, A., Lumbreras, V., Lopez, C., Kizis, E. D. P.-D. and Pages, M. (2006) Maize dbf1-interactor protein 1 containing an r3h domain is a potential regulator of dbf1 activity in stress responses. Plant J. 46 747–757.PubMedCrossRefGoogle Scholar
  12. 12.
    Herrmann, M. M., Pinto, S., Kluth, J., Wienand, U. and Lorbiecke, R. (2006) The PTI1-like kinase ZmPti1a from maize (Zea mays l.) co-localizes with callose at the plasma membrane of pollen and facilitates a competitive advantage to the male gametophyte. BMC Plant Biol. 6 22.PubMedCrossRefGoogle Scholar
  13. 13.
    Marton, M. L., Cordts, S., Broadhvest, J. and Dresselhaus, T. (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307 573–576.PubMedCrossRefGoogle Scholar
  14. 14.
    Dresselhaus, T., Amien, S., Marton, M., Strecke, A., Brettschneider, R. and Cordts, S. (2005) Transparent leaf area1 encodes a secreted proteolipid required for anther maturation, morphogenesis, and differentiation during leaf development in maize. Plant Cell. 17 730–745.PubMedCrossRefGoogle Scholar
  15. 15.
    Ma, Z. and Dooner, H. K. (2004) A mutation in the nuclear-encoded plastid ribosomal protein s9 leads to early embryo lethality in maize. Plant J. 37 92–103.PubMedCrossRefGoogle Scholar
  16. 16.
    Ono, A., Kim, S.-H. and Walbot, V. (2002) Subcellular localization of mura and murb proteins encoded by the maize mudr transposon. Plant Mol. Biol. 50 599–611.PubMedCrossRefGoogle Scholar
  17. 17.
    Beardslee, T. A., Roy-Chowdhury, S., Jaiswal, P., Buhot, L., Lerbs-Mache, S., Stern, D. B. and Allison, L. A. (2002) A nucleus-encoded maize protein with sigma factor activity accumulates in mitochondria and chloroplasts. Plant J. 31 199–209.PubMedCrossRefGoogle Scholar
  18. 18.
    Taguchi-Shiobara, F., Yuan, Z., Hake, S. and Jackson, D. (2001) The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev. 15 2755–2766.PubMedCrossRefGoogle Scholar
  19. 19.
    Rottgers, K., Krohn, N. M., Lichota, J., Stemmer, C., Merkle, T. and Grasser, K. D. (2000) DNA-interactions and nuclear localisation of the chromosomal hmg domain protein ssrp1 from maize. Plant J. 23 395–405.PubMedCrossRefGoogle Scholar
  20. 20.
    Ivanchenko, M., Vejlupkova, Z., Quatrano, R. S. and Fowler, J. E. (2000) Maize rop7 gtpase contains a unique, caax box-independent plasma membrane targeting signal. Plant J. 24 79–90.PubMedCrossRefGoogle Scholar
  21. 21.
    Landy, A. (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem. 58 913–941.PubMedCrossRefGoogle Scholar
  22. 22.
    Chan, A. P., Pertea, G., Cheung, F., Lee, D., Zheng, L., Whitelaw, C., Pontaroli, A. C., SanMiguel, P., Yuan, Y., Bennetzen, J., Barbazuk, W. B., Quackenbush, J. and Rabinowicz, P. D. (2006) The tigr maize database. Nucl. Acids Res. 34 D771–776.PubMedCrossRefGoogle Scholar
  23. 23.
    Fu, Y., Emrich, S. J., Guo, L., Wen, T. J., Ashlock, D. A., Aluru, S. and Schnable, P. S. (2005) Quality assessment of maize assembled genomic islands (magis) and large-scale experimental verification of predicted genes. Proc. Natl. Acad. Sci. USA 102 12282–12287.PubMedCrossRefGoogle Scholar
  24. 24.
    Wach, A. (1996) PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in. S. cerevisiae. Yeast 12 259–265.CrossRefGoogle Scholar
  25. 25.
    Rozen, S. and H. Skaletsky (1999) Primer3 on the WWW for general users and for biologist programmers. Meth. Mol. Biol. 132 365–386.Google Scholar
  26. 26.
    Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A. and Tsien, R. Y. (2002) A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA. 99 7877–7882.PubMedCrossRefGoogle Scholar
  27. 27.
    Paz, M., Martinez, J., Kalvig, A., Fonger, T. and Wang, K. (2006) Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep. 25 206–213.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Amitabh Mohanty
    • 1
  • Yan Yang
    • 2
  • Anding Luo
    • 2
  • Anne W. Sylvester
    • 3
  • David Jackson
    • 2
  1. 1.DuPont Knowledge CentreHyderabadIndia
  2. 2.Plant Genetics, Cold Spring Harbor LaboratoryCold Spring HarborNew yorkUSA
  3. 3.Department of Molecular BiologyUniversity of WyomingLaramieUSA

Personalised recommendations