Advertisement

Inserting and Manipulating DNA in a Nanopore with Optical Tweezers

  • U. F. Keyser
  • J. van der Does
  • C. Dekker
  • N. H. Dekker
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 544)

Summary

The translocation of small molecules and polymers is an integral process for the functioning of living cells. Many of the basic physical, chemical, and biological interactions have not yet been studied because they are not directly experimentally accessible. We have shown that a combination of optical tweezers, single solid-state nanopores, and electrophysiological ionic current detection enable deeper insight into the behavior of polymers in confinement. Here we describe the experimental procedures that are necessary to manipulate single biopolymers in a single nanopore, not only by electrical fields, but also through mechanical forces using optical tweezers.

Key words

Nanopore Optical tweezers DNA translocation Biopolymers Polymer transport Single-molecule sensors Single-channel recording 

Notes

Acknowledgments

We thank Peter Veenhuizen, Stijn van Dorp, Bernard Koeleman, Ya-Hui Chen, and Suzanne Hage for making the biotinylated lambda-DNA, and Bernadette Quinn for help with electrochemical questions. Ralph Smeets, Diego Krapf, and Meng-Yue Wu fabricated the nanopores. Stijn van Dorp and Bernard Koeleman are especially acknowledged for obtaining some of the data presented here. Financial support of FOM and NWO is gratefully acknowledged.

References

  1. 1.
    Li, J., Stein, D., McMullan, C., Branton, D., Aziz, M. J., and Golovchenko, J. A. (2001). Ion-beam sculpting at nanometre length scales. Nature 412, 166–169CrossRefGoogle Scholar
  2. 2.
    Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology 2, 209–215CrossRefGoogle Scholar
  3. 3.
    Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W., and Dekker, C. (2003). Fabrication of solid-state nanopores with single-nanometre precision. Nature Materials 2, 537–540CrossRefGoogle Scholar
  4. 4.
    Keyser, U. F., Koeleman, B. N., van Dorp, S., Krapf, D., Smeets, R. M. M., Lemay, S. G., Dekker, N. H., and Dekker, C. (2006). Direct force measurements on DNA in a solid-state nanopore. Nature Physics 2, 473–477CrossRefGoogle Scholar
  5. 5.
    Smeets, R. M. M., Keyser, U. F., Krapf, D., Wu, M. Y., Dekker, N. H., and Dekker, C. (2006). Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Letters 6, 89–95CrossRefGoogle Scholar
  6. 6.
    Gerland, U., Bundschuh, R., and Hwa, T. (2004). Translocation of structured polynucleotides through nanopores. Physical Biology 1, 19–26CrossRefGoogle Scholar
  7. 7.
    Krapf, D., Wu, M. Y., Smeets, R. M. M., Zandbergen, H. W., Dekker, C., and Lemay, S. G. (2006). Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Letters 6, 105–109CrossRefGoogle Scholar
  8. 8.
    Keyser, U. F., van der Does, J., Dekker, C., and Dekker, N. H. (2006). Optical tweezers for force measurements on DNA in nanopores. Review of Scientific Instruments 77, 105105CrossRefGoogle Scholar
  9. 9.
    Visscher, K. and Block, S. M. (1998). Versatile optical traps with feedback control. Molecular Motors and the Cytoskeleton, Part B 298, 460–489CrossRefGoogle Scholar
  10. 10.
    Keyser, U. F., Krapf, D., Koeleman, B. N., Smeets, R. M. M., Dekker, N. H., and Dekker, C. (2005). Nanopore tomography of a laser focus. Nano Letters 5, 2253–2256CrossRefGoogle Scholar
  11. 11.
    Smeets, R. M. M., Keyser, U. F., Dekker, N. H., and Dekker, C. (2006). Nanobubbles in solid-state nanopores. Physical Review Letters 97, 088101CrossRefGoogle Scholar
  12. 12.
    Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A., Croquette, V. (1996). The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837CrossRefGoogle Scholar
  13. 13.
    Davison, P. F. (1959). The effect of hydrodynamic shear on the deoxyribonucleic acid from T2 and T4 bacteriophages. Proceedings of the national Academy of Sciences USA 45, 1560–1568Google Scholar
  14. 14.
    Tong, H. D., Jansen, H. V., Gadgil, V. J., Bostan, C. G., Berenschot, E. van Rijn, C. J. M., and Elwenspoek, M. (2004). Silicon Nitride Nanosieve Membrane. Nano Letters 4, 283–287CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • U. F. Keyser
    • 1
  • J. van der Does
    • 2
  • C. Dekker
    • 2
  • N. H. Dekker
    • 2
  1. 1.Cavendish Laboratory, Biological and Soft SystemsUniversity of CambridgeCambridgeUK
  2. 2.Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands

Personalised recommendations