Raman-Assisted X-Ray Crystallography for the Analysis of Biomolecules

  • Dominique BourgeoisEmail author
  • Gergely Katona
  • Eve de Rosny
  • Philippe Carpentier
Part of the Methods in Molecular Biology™ book series (MIMB, volume 544)


In this chapter, we describe Raman microspectrophotometry applied to crystals of biomolecules. Raman spectra collected in crystallo provide structural information highly complementary to X-ray diffraction, relate the crystalline state to the solution state, and allow the identification of ligand-bound or intermediate states of macromolecules. Nonresonant Raman spectroscopy is particularly suitable to the study of macromolecular crystals, and therefore applies to a wide range of noncolored crystalline proteins. Practical issues related to the investigation of crystals by Raman microspectrophotometry are reviewed, and the current limitations are highlighted.

Key words

In crystallo Raman spectroscopy Macromolecules Microspectrophotometers Crystallography Complementary methods Nonresonant Raman spectroscopy 



This work received financial support from the European Mole­cular Biology Organisation (EMBO), the European Synchrotron Radiation Facility (Grenoble, France), “Ministère de l’Enseignement et de la Recherche,” and the “Région Rhônes-Alpes” (France, CPER and CIBLE contracts). Contributions by Antoine Royant, Vincent Nivière, Jeremy Ohana, David Annequin, and Michel Belleil are acknowledged.


  1. 1.
    Hadfield, A. and Hajdu, J. (1993). A fast and portable microspectrophotometer for protein crystallography, J. Appl. Cryst.. 26, 839–842.CrossRefGoogle Scholar
  2. 2.
    Chen, Y., Srajer, V., Ng, K., Legrand, A. and Moffat, K. (1994). Optical monitoring of protein crystals in time-resolved X-ray experiments: microspectrophotometer design and performance, Rev. Sci. Instrum. 65, 1506–1511.CrossRefGoogle Scholar
  3. 3.
    Bourgeois, D., Vernede, X., Adam, V., Fioravanti, E. and Ursby, T. (2002). A microspectrophotometer for absorption and fluorescence studies of protein crystals, J. Appl. Cryst. 35, 319–326.CrossRefGoogle Scholar
  4. 4.
    Sakai, K., Matsui, Y., Kouyama, T., Shiro, Y. and Adachi, S. (2002). Optical monitoring of freeze-trapped reaction intermediates in protein crystals: a microspectro-photometer for cryogenic protein crystallography, J. Appl. Cryst. 35, 270–273.CrossRefGoogle Scholar
  5. 5.
    Klink, B. U., Goody, R. S. and Scheidig, A. J. (2006). A newly designed microspectrofluorometer for kinetic studies on protein crystals in combination with X-ray diffraction, Biophys. J. 91, 981–992.CrossRefGoogle Scholar
  6. 6.
    Royant, A., Carpentier, P., Ohana, J., McGeehan, J., Paetzold, B., Noirclerc-Savoye, M., Vernede, X., Adam, V. and Bourgeois, D. (2007). Advances in spectroscopic methods for biological crystals. Part 1. Fluorescence lifetime measurements, J. Appl. Crystallogr. 40, 1105–1112.CrossRefGoogle Scholar
  7. 7.
    Berglund, G. I., Carlsson, G. H., Smith, A. T., Szoke, H., Henriksen, A. and Hajdu, J., (2002). The catalytic pathway of horseradish peroxidase at high resolution, Nature. 417, 463–468.CrossRefGoogle Scholar
  8. 8.
    Kuhnel, K., Derat, E., Terner, J., Shaik, S. and Schlichting, I. (2007). Structure and quantum chemical characterization of chloroperoxidase compound 0, a common reaction intermediate of diverse heme enzymes, Proc. Natl Acad. Sci. U. S. A. 104, 99–104.CrossRefGoogle Scholar
  9. 9.
    Wilmot, C. M., Sjogren, T., Carlsson, G. H., Berglund, G. I. and Hajdu, J. (2002). Defining redox state of X-ray crystal structures by single-crystal ultraviolet-visible microspectrophotometry, Methods Enzymol. 353, 301–318.CrossRefGoogle Scholar
  10. 10.
    Adam, V., Royant, A., Niviere, V., Molina-Heredia, F. P. and Bourgeois, D. (2004). Structure of superoxide reductase bound to ferrocyanide and active site expansion upon X-ray-induced photo-reduction, Structure (Camb) 12, 1729–1740.CrossRefGoogle Scholar
  11. 11.
    Beitlich, T., Kuhnel, K., Schulze-Briese, C., Shoeman, R. L. and Schlichting, I. (2007). Cryoradiolytic reduction of crystalline heme proteins: analysis by UV–Vis spectroscopy and X-ray crystallography, J. Synchrotron Radiat. 14, 11–23.CrossRefGoogle Scholar
  12. 12.
    Pearson, A. R., Mozzarelli, A. and Rossi, G. L. (2004). Microspectrophotometry for structural enzymology, Curr. Opin. Struct. Biol. 14, 656–662.CrossRefGoogle Scholar
  13. 13.
    Weik, M., Vernede, X., Royant, A. and Bourgeois, D. (2004). Temperature derivative fluore-scence spectroscopy as a tool to study dynamical changes in protein crystals, Biophys. J. 86, 3176–3185.CrossRefGoogle Scholar
  14. 14.
    Pascal, A. A., Liu, Z., Broess, K., van Oort, B., van Amerongen, H., Wang, C., Horton, P., Robert, B., Chang, W. and Ruban, A. (2005). Molecular basis of photoprotection and control of photosynthetic light-harvesting, Nature 436, 134–137.CrossRefGoogle Scholar
  15. 15.
    Sage, J. T. and Jee, W. (1997). Structural characterization of the myoglobin active site using infrared crystallography, J. Mol. Biol. 274, 21–26.CrossRefGoogle Scholar
  16. 16.
    Zhu, L., Sage, J. T. and Champion, P. M. (1993). Quantitative structural comparisons of heme protein crystals and solutions using resonance Raman spectroscopy, Biochemistry 32, 11181–11185.CrossRefGoogle Scholar
  17. 17.
    Carey, P. R. and Dong, J. (2004). Following ligand binding and ligand reactions in proteins via Raman crystallography, Biochemistry 43, 8885–8893.CrossRefGoogle Scholar
  18. 18.
    Smulevich, G., Wang, Y., Mauro, J. M., Wang, J. M., Fishel, L. A., Kraut, J. and Spiro, T. G.(1990). Single-crystal resonance Raman spectroscopy of site-directed mutants of cytochrome c peroxidase, Biochemistry 29, 7174–7180.CrossRefGoogle Scholar
  19. 19.
    Davies, R. J., Burghammer, M. and Riekel, C. (2005). Simultaneous microRaman and syn­chrotron radiation microdiffraction: tools for materials characterization, Appl. Phys. Lett. 82, 264105.CrossRefGoogle Scholar
  20. 20.
    Briois, V., Vantelon, D., Villain, F., Couzinet, B., Flank, A. M. and Lagarde, P. (2007). Combining two structural techniques on the micrometer scale: micro-XAS and micro-Raman spectroscopy, J. Synchrotron Radiat. 14, 403–408.CrossRefGoogle Scholar
  21. 21.
    Boccaleri, E., Carniato, F., Croce, G., Viterbo, D., van Beek, W., Emerich, H. and Milanesio, M. (2007). In situ simultaneous Raman/high-resolution X-ray powder diffraction study of transformations occurring in materials at non-ambient conditions, J. Appl. Cryst. 40, 684–693.CrossRefGoogle Scholar
  22. 22.
    Carpentier, P., Royant, A., Ohana, J. and Bourgeois, D. (2007). Advances in spectroscopic methods for biological crystals. Part 2.Raman spectroscopy, J. Appl. Cryst. 40, 1113–1122.CrossRefGoogle Scholar
  23. 23.
    Katona, G., Carpentier, P., Niviere, V., Amara, P., Adam, V., Ohana, J., Tsanov, N. and Bourgeois, D. (2007). Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme, Science 316, 449–453.CrossRefGoogle Scholar
  24. 24.
    McGeehan, J., Carpentier, P., Royant, A., Bourgeois, D. and Ravelli, R. B. (2007). X-ray radiation-induced damage in DNA monitored by online Raman, J. Synchrotron Radiat. 14, 99–108.CrossRefGoogle Scholar
  25. 25.
    Halle, B. (2004). Biomolecular cryocrystallography: structural changes during flash-cooling, Proc. Natl Acad. Sci. U. S. A. 101, 4793–4798.CrossRefGoogle Scholar
  26. 26.
    Helfand, M. S., Totir, M. A., Carey, M. P., Hujer, A. M., Bonomo, R. A. and Carey, P. R. (2003). Following the reactions of mechanism-based inhibitors with beta-lactamase by Raman crystallography, Biochemistry 42, 13386–13392.CrossRefGoogle Scholar
  27. 27.
    Smulevich, G., Wang, Y., Edwards, S. L., Poulos, T. L., English, A. M. and Spiro, T. G. (1990). Resonance Raman spectroscopy of cytochrome c peroxidase single crystals on a variable-temperature microscope stage, Biochemistry 29, 2586–2592.CrossRefGoogle Scholar
  28. 28.
    Kudryavtsev, A. B., Mirov, S. B., DeLucas, L. J., Nicolete, C., van der Woerd, M., Bray, T. L. and Basiev, T. T. (1998). Polarized Raman spectroscopic studies of tetragonal lysozyme single crystals, Acta Crystallogr. D Biol. Crystallogr. 54, 1216–1229.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dominique Bourgeois
    • 1
    Email author
  • Gergely Katona
    • 1
  • Eve de Rosny
    • 1
  • Philippe Carpentier
    • 1
  1. 1.Dominique BourgeoisInstitut de Biologie Structurale Jean-Pierre EbelGrenoble CedexFrance

Personalised recommendations