Diagnostic Assays for Chronic Granulomatous Disease and Other Neutrophil Disorders

  • Houda Zghal Elloumi
  • Steven M. Holland
Part of the Methods in Molecular Biology™ book series (MIMB, volume 412)

Abstract

Inasmuch as neutrophils are the primary cellular defense against bacterial and fungal infections, disorders that affect these white cells typically predispose individuals to severe and recurrent infections. Therefore, diagnosis of such disorders is an important first step in directing long-term treatment/care for the patient. Herein, we describe methods to identify chronic granulomatous disease (CGD), leukocyte adhesion deficiency (LAD), and neutropenia. The assays are relatively simple to perform, cost-effective, and can be performed with equipment available in most laboratories.

Key Words

Chronic granulomatous disease (CGD) chemiluminescence leukocyte adhesion deficiency (LAD) neutropenia nitroblue tetrazolium reactive oxygen species superoxide 

References

  1. 1.
    Witko-Sarsat, F., Rieu, P., Descamps-Latscha, B., Lesavre, P., and Halbwachs-Mecarelli, L. (2000) Neutrophils: molecules, functions and pathophysiological aspects. Lab. Invest. 80, 617–653.PubMedGoogle Scholar
  2. 2.
    Roos, D., Van Bruggen, R., and Meischl, C. (2003) Oxidative killing of microbes by neutrophils. Microbes. Infect. 5, 1307–1315.PubMedCrossRefGoogle Scholar
  3. 3.
    Ganz, T. (2004) Antimicrobial polypeptides. J. Leukoc. Biol. 75, 34–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Rosenzweig, S. D. and Holland, S. M. (2004) Phagocyte immunodeficiencies and their infections. J. Allergy Clin. Immunol. 113, 620–626.PubMedCrossRefGoogle Scholar
  5. 5.
    Berendes, H., Bridges, R. A., and Good, R. A. (1957) A fetal granulomatous disease of childhood: the clinical study of a new syndrome. Minn. Med. 40, 309–312.PubMedGoogle Scholar
  6. 6.
    Levy, R., Rotrosen, D., Nagauker, O., Leto, T., and Malech, H. (1990) Induction of the respiratory burst in HL-60 cells, correlation of function and protein expression. J. Immunol. 145, 2595–2601.PubMedGoogle Scholar
  7. 7.
    Etzioni, A. (1996) Adhesion molecules—their role in health and disease. Pediatr. Res. 39, 191–198.PubMedCrossRefGoogle Scholar
  8. 8.
    Badolato, R., Fontana, S., Notarangelo, L. D., and Savoldi, G. (2004) Congenital neutropenia: advances in diagnosis and treatment. Curr. Opin. Allerg. Immunol. 4, 513–521.CrossRefGoogle Scholar
  9. 9.
    Kostman, R. (1975) Infantile genetic agranulocytosis. A review with presentation of ten new cases. Acta. Paediatr. Scand. 64, 362–368.PubMedCrossRefGoogle Scholar
  10. 10.
    Horwitz, M., Benson, K. F., Person, R. E., Aprikyan, A. G., and Dale, D. C. (1999) Mutations in ELA2 encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat. Genet. 23, 433–436.PubMedCrossRefGoogle Scholar
  11. 11.
    Zuelzer, W. W. (1964) ‘Myelokathexis’: a new form of chronic granulocytopenia. N. Engl. J. Med. 270, 699–704.PubMedCrossRefGoogle Scholar
  12. 12.
    Hernandez, P. A., Gorlin, R. J., Lukens, J. N., et al. (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat. Genet. 34, 70–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Stroncek, D. F., Skubitz, K. M., and McCullough, J. (1990) Biochemical nature of the neutrophil-specific antigen NB1. Blood 75, 744–755.PubMedGoogle Scholar
  14. 14.
    Baehner, R. L., Boxer, L. A., and Davis, J. (1976) The biochemical basis of nitroblue tetrazolium reduction in normal human and chronic granulomatous disease polymorphonuclear leukocytes. Blood 48, 309–313.PubMedGoogle Scholar
  15. 15.
    Choi, H. S., Kim, J. W., Cha, Y. N., and Kim, C. (2006) A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J. Immunoass. Immunochem. 27, 31–44.CrossRefGoogle Scholar
  16. 16.
    Tan, A. S. and Berridge, M. V. (2000) Superoxide produced by activated neutrophils efficiently reduces the tetrazolium salt, WST-1 to produce a soluble formazan: a simple colorimetric assay for measuring respiratory burst activation and for screening anti-inflammatory agents. J. Immunol. Meth. 238, 59–68.CrossRefGoogle Scholar
  17. 17.
    Tarpey, M. M., Wink, D. A., and Grisham, M. B. (2004) Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R431–444.PubMedGoogle Scholar
  18. 18.
    Peskin, A. V. and Winterbourn, C. C. (2000) A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin. Chim. Acta 293, 157–166.PubMedCrossRefGoogle Scholar
  19. 19.
    Björquist, P., Palmer, M., and Ek, B. (1994) Measurement of superoxide anion production using maximal rate of cytochrome (III) C reduction in phorbol ester stimulated neutrophils, immobilised to microtiter plates. Biochem. Pharmacol. 48, 1967–1972.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu, L., Dahlgren, C., Elwing, H., and Lundqvist, H. (1996) A simple chemiluminescence assay for the determination of reactive oxygen species produced by human neutrophils. J. Immunol. Meth. 192, 173–178.CrossRefGoogle Scholar
  21. 21.
    Hasegawa, H., Suzuki, K., Nakaji, S., and Sugawara, K. (1997) Analysis and assessment of the capacity of neutrophils to produce reactive oxygen species in a 96-well microplate format using lucigenin-and luminol-dependent chemiluminescence. J. Immunol. Meth. 210, 1–10.CrossRefGoogle Scholar
  22. 22.
    Daiber, A., August, M., Baldus, S., et al. (2004) Measurement of NAD(P)H oxidase-derived superoxide with the luminol analogue L-012. Free Radic. Biol. Med. 36, 101–111.PubMedCrossRefGoogle Scholar
  23. 23.
    Skatchkov, M. P., Sperling, D., Hink, U., et al. (1999) Validation of lucigenin as a chemiluminescent probe to monitor vascular superoxide as well as basal vascular nitric oxide production. Biochem. Biophys. Res. Commun. 254, 319–324.PubMedCrossRefGoogle Scholar
  24. 24.
    Stielow, C., Catar, R. A., Muller, G., et al. (2006) Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem. Biophys. Res. Commun. 344, 200–205.PubMedCrossRefGoogle Scholar
  25. 25.
    Vowells, S. J., Sekhsaria, S., Malech, H. L., Shalit, M., and Fleisher, T. A. (1995) Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes. J. Immunol. Meth. 178, 89–97.CrossRefGoogle Scholar
  26. 26.
    Bass, D. A., Parce, W., Dechatelet, L. R., Szejda, P., Seeds, M. C., and Thomas, M. (1983) Flow cytometry studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J. Immunol. 130, 1910–1917.PubMedGoogle Scholar
  27. 27.
    Keston, A. S. and Brandt, R. (1965) The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal. Biochem. 11, 1–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Hempel, S. L., Buettner, G. R., O’Malley, Y. Q., Wessels, D. A., and Flaherty, D. M. (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radical. Biol. Med. 27, 146–159.CrossRefGoogle Scholar
  29. 29.
    Emmendörffer, A., Nakamura, M., Rothe, G., Spiekermann, K., Lohmann-Matthes, M. L., and Roesler, J. (1994) Evaluation of flow cytometric methods for the diagnosis of chronic granulomatous disease variants under routine laboratory conditions. Cytometry 18, 147–155.PubMedCrossRefGoogle Scholar
  30. 30.
    Alvarez-Larran, A., Toll, T., Rives, S., and Estella, J. (2005) Assessment of neutrophil activation in whole blood by flow cytometry. Clin. Lab. Haem. 27, 41–46.CrossRefGoogle Scholar
  31. 31.
    Pou, S., Rosen, G. M., Bntigan, B. E., and Cohen, M. S. (1989) Intracellular spintrapping of oxygen centered radicals generated by human neutrophils. Biochim. Biophys. Acta 991, 459–464.PubMedGoogle Scholar
  32. 32.
    Roubaud, V., Sankarapandi, S., Kuppusamy, P., Tordo, P., and Zweier, J. L. (1997) Quantitative measurement of superoxide generation using the spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide. Anal. Biochem. 247, 404–411.PubMedCrossRefGoogle Scholar
  33. 33.
    Huu, T. P., Dumez, Y., Marquetty, C., Durandy, A., Boue, J., and Hakim, J. (1987) Prenatal diagnosis of chronic granulomatous disease (CGD) in four high risk male fetuses. Prenat. Diagn. 7, 253–260.PubMedCrossRefGoogle Scholar
  34. 34.
    Newburger, P. E., Cohen, H. J., Rothchild, S. B., Hobbins, J. C., Malawista, S. E., and Mahoney, M. J. (1979) Prenatal diagnosis of chronic granulomatous disease. N. Engl. J. Med. 300, 178–181.PubMedCrossRefGoogle Scholar
  35. 35.
    Matthay, K. K., Golbus, M. S., Wara, D. W., and Mentzer, W. C. (1984) Prenatal diagnosis of chronic granulomatous disease. Am. J. Med. Genet. 17, 731–739.PubMedCrossRefGoogle Scholar
  36. 36.
    Anderson, D. C., Schmalsteig, F. C., Finegold, M. J., et al. (1985) The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J. Infect. Dis. 152, 669–689.Google Scholar
  37. 37.
    Tan, S. M., Hyland, R. H., Al-shamkhani, A., Douglass, W. A., Shaw, J. M., and Law, S. K. (2000) Effect of integrin beta 2 subunit truncations on LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) assembly, surface expression, and function. J. Immunol. 165, 2574–2581.PubMedGoogle Scholar
  38. 38.
    Verheugt, F. W., Von dem Borne, A. E., Decary, F., and Engelfriet, C. P. (1977) The detection of granulocyte alloantibodies with an indirect immunofluorescence test. Br. J. Haematol. 36, 533–544.PubMedCrossRefGoogle Scholar
  39. 39.
    Curtis, B. R., Reno, C., and Aster, R. H. (2005) Neonatal alloimmune neutropenia attributed to maternal immunoglobulin G antibodies against the neutrophil alloantigen HNA-1c (SH): a report of five cases. Transfusion 45, 1308–1313.PubMedCrossRefGoogle Scholar
  40. 40.
    Wikman, A., Olsson, I., Shanwellt, A., and Lundahl, J. (2001) Detection by flow cytometry of antibodies against surface and intracellular granulocyte antigens. Scand. J. Clin. Lab. Invest. 61, 307–316.PubMedCrossRefGoogle Scholar
  41. 41.
    Holland, S. M. (2006) Neutropenia and neutrophil defects, in Manual of Molecular and Clinical Laboratory Immunology. 7th Edition. (Detrick, B., Hamilton, R. G., and Folds, J. D., eds.), ASM, Washington, DC, pp. 924–932.Google Scholar
  42. 42.
    Lindlöf, M., Kere, J., Ristola, M., et al. (1987) Prenatal diagnosis of X-linked granulomatous disease using restriction fragment length polymorphism analysis. Genomics 1, 87–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Heyworth, P. G. and Curnutte, J. T. (2006) Molecular Diagnosis of Chronic Granulomatous Disease, in Manual of Molecular and Clinical Laboratory Immunology. 7th Edition. (Detrick, B., Hamilton, R. G., and Folds, J. D., eds.), ASM, Washington, DC, pp. 262–271.Google Scholar
  44. 44.
    Chien, S. C., Lee, C. N., Hung, C. C., Tsao, P. N., Su, Y. N., and Hsieh, F. J. (2003) Rapid prenatal diagnosis of X-linked chronic granulomatous disease using a denaturing high performance liquid chromatography (DHPLC) system. Prenat. Diagn. 23, 1092–1096.PubMedCrossRefGoogle Scholar
  45. 45.
    Introne, W., Boissy, R. E., and Gahl, W. A. (1999) Clinical, molecular, and cell biological aspects of Chediak-Higashi syndrome. Mol. Genet. Metab. 68, 283–303.PubMedCrossRefGoogle Scholar
  46. 46.
    Tamura, A., Agematsu, K., Mori, T., et al. (1994) A marked decrease in defensin mRNA in the only case of congenital neutrophil-specific granule deficiency reported in Japan. Int. J. Hematol. 59, 137–142.PubMedGoogle Scholar
  47. 47.
    Zen, K., Reaves, T. A., Soto, I., and Liu, Y. (2006) Response to genistein: assaying the activation status and chemotaxis efficacy of isolated neutrophils. J. Immunol. Meth. 309, 86–98.CrossRefGoogle Scholar
  48. 48.
    Hanson, A. J. and Quinn, M. T. (2002) Effect of fibrin sealant composition on human neutrophil chemotaxis. J. Biomed. Mater. Res. 61, 474–481.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Houda Zghal Elloumi
    • 1
  • Steven M. Holland
    • 1
  1. 1.Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesda

Personalised recommendations