Protein Targeting Protocols pp 99-117

Part of the Methods in Molecular Biology™ book series (MIMB, volume 390)

The Mitochondrial Machinery for Import of Precursor Proteins

  • Kipros Gabriel
  • Nikolaus Pfanner

Mitochondria contain a small genome that codes for approx 1% of the total number of proteins that reside in the mitochondria. Hence, most mitochondrial proteins are encoded for by the nuclear genome. After transcription in the nucleus these proteins are synthesized by cytosolic ribosomes. Like proteins destined for other organellar compartments, mitochondrially destined proteins possess targeting signals within their primary or secondary structure that direct them to the organelle with the assistance of cytosolic factors. Very specialized and discriminatory protein translocase complexes in the mitochondrial membranes, intermembrane space, and matrix are then engaged for the translocation, sorting, integration, processing, and folding of the newly imported proteins. The principles of protein targeting into mitochondria have been and are still being unraveled, mostly by studies with the yeast Saccharomyces cerevisiae and the fungus Neurospora crassa. In this chapter the major principles of mitochondrial protein targeting as currently understood will be discussed as a foundation for the experimental methods discussed later in this volume.

Key Words

Mitochondrial protein import translocase of the outer mitochondrial membrane translocase of the inner mitochondrial membrane sorting and assembly machinery presequence translocase-associated motor mitochondrial intermembrane space import and assembly preprotein signal sequence. 

References

  1. 1.
    Green, D. R. (2005) Apoptotic pathways: ten minutes to dead. Cell 121, 671–674.PubMedGoogle Scholar
  2. 2.
    Beal, M. F. (2005) Mitochondria take center stage in aging and neurodegeneration. Ann. Neurol. 58, 495–505.PubMedGoogle Scholar
  3. 3.
    Neupert, W. (1997) Protein import into mitochondria. Annu Rev Biochem. 66, 863–917.PubMedGoogle Scholar
  4. 4.
    Dekker, P. J., Ryan, M. T., Brix, J., Müller, H., Hönlinger, A., and Pfanner, N. (1998) Preprotein translocase of the outer mitochondrial membrane: molecular dissection and assembly of the general import pore complex. Mol. Cell Biol. 18, 6515–6524.PubMedGoogle Scholar
  5. 5.
    Taylor, R. D. and Pfanner, N. (2004) The protein import and assembly machinery of the mitochondrial outer membrane. Biochim. Biophys. Acta 1658, 37–43.PubMedGoogle Scholar
  6. 6.
    Gabriel, K., Egan, B., and Lithgow, T. (2003) Tom40, the import channel of the mitochondrial outer membrane, plays an active role in sorting imported proteins. EMBO J. 22, 2380–2386.PubMedGoogle Scholar
  7. 7.
    Wiedemann, N., Kozjak, V., Chacinska, A., et al. (2003) Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424, 565–571.PubMedGoogle Scholar
  8. 8.
    Pfanner, N., Wiedemann, N., Meisinger, C., and Lithgow T. (2004) Assembling the mitochondrial outer membrane. Nat. Struct. Mol. Biol. 11, 1044–1048.PubMedGoogle Scholar
  9. 9.
    Wiedemann, N., Frazier, A. E., and Pfanner, N. (2004) The protein import machinery of mitochondria. J. Biol. Chem. 279, 14473–14476.PubMedGoogle Scholar
  10. 10.
    Jensen, R. E. and Dunn, C. D. (2002) Protein import into and across the mitochondrial inner membrane: role of the TIM23 and TIM22 translocons. Biochim. Biophys. Acta 1592, 25–34.PubMedGoogle Scholar
  11. 11.
    Chacinska, A., Rehling, P., Guiard, B., et al. (2003) Mitochondrial translocation contact sites: separation of dynamic and stabilizing elements in formation of a TOM-TIM-preprotein supercomplex. EMBO J. 22, 5370–5381.PubMedGoogle Scholar
  12. 12.
    Endo, T., Yamamoto, H., and Esaki, M. (2003) Functional cooperation and separation of translocators in protein import into mitochondria, the double-membrane bounded organelles. J. Cell Sci. 116, 3259–3267.PubMedGoogle Scholar
  13. 13.
    Koehler, C. M. (2004) New developments in mitochondrial assembly. Annu Rev Cell Dev Biol. 20, 309–335.PubMedGoogle Scholar
  14. 14.
    Chacinska, A., Lind, M., Frazier, A. E., et al. (2005) Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120, 817–829.PubMedGoogle Scholar
  15. 15.
    Oka, T. and Mihara, K. (2005) A railroad switch in mitochondrial protein import. Mol. Cell 18, 145–146.PubMedGoogle Scholar
  16. 16.
    Geissler, A., Rassow, J., Pfanner, N., and Voos, W. (2001) Mitochondrial import driving forces: enhanced trapping by matrix Hsp70 stimulates translocation and reduces the membrane potential dependence of loosely folded preproteins. Mol. Cell Biol. 21, 7097–7104.PubMedGoogle Scholar
  17. 17.
    Truscott, K. N., Voos, W., Frazier, A. E., et al. (2003) A J-protein is an essential subunit of the presequence translocase-associated protein import motor of mitochondria . J. Cell Biol. 163, 707–713.PubMedGoogle Scholar
  18. 18.
    Rehling, P., Brandner, K., and Pfanner, N. (2004) Mitochondrial import and the twin-pore translocase. Nat. Rev. Mol. Cell Biol. 5, 519–530.PubMedGoogle Scholar
  19. 19.
    Chacinska, A., Pfannschmidt, S., Wiedemann, N., et al. (2004) Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J. 23, 3735–3746.PubMedGoogle Scholar
  20. 20.
    Roise, D. and Schatz, G. (1988) Mitochondrial presequences. J. Biol. Chem. 263, 4509–4511.PubMedGoogle Scholar
  21. 21.
    von Heijne, G., Steppuhn, J., and Herrmann, R.G. (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180, 535–545.Google Scholar
  22. 22.
    van Loon, A. P. and Schatz, G. (1987) Transport of proteins to the mitochondrial intermembrane space: the ‘sorting’ domain of the cytochrome c_1presequence is a stop-transfer sequence specific for the mitochondrial inner membrane. EMBO J. 6, 2441–2448.PubMedGoogle Scholar
  23. 23.
    Gärtner, F., Bömer, U., Guiard, B. and Pfanner, N. (1995) The sorting signal of cytochrome b_2promotes early divergence from the general mitochondrial import pathway and restricts the unfoldase activity of matrix Hsp70. EMBO J. 14, 6043–6057.PubMedGoogle Scholar
  24. 24.
    Bömer, U., Meijer, M., Guiard, B., Dietmeier, K., Pfanner, N., and Rassow, J. (1997) The sorting route of cytochrome b_2branches from the general mitochondrial import pathway at the preprotein translocase of the inner membrane. J. Biol. Chem. 272, 30439–30446.PubMedGoogle Scholar
  25. 25.
    Herrmann, J. M. and Hell, K. (2005) Chopped, trapped or tacked—protein translocation into the IMS of mitochondria. Trends Biochem. Sci. 30, 205–211.PubMedGoogle Scholar
  26. 26.
    Brix, J., Rüdiger, S., Bukau, B., Schneider-Mergener, J., and Pfanner, N. (1999) Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J. Biol. Chem. 274, 16522–16530.PubMedGoogle Scholar
  27. 27.
    Egan, B., Beilharz, T., George, R., et al. (1999) Targeting of tail-anchored proteins to yeast mitochondria in vivo. FEBS Lett. 451, 243–248.PubMedGoogle Scholar
  28. 28.
    Beddoe, T. and Lithgow, T. (2002) Delivery of nascent polypeptides to the mitochondrial surface. Biochim Biophys Acta 1592, 35–39.PubMedGoogle Scholar
  29. 29.
    Marc, P., Margeot, A., Devaux, F., Blugeon, C., Corral-Debrinski, M., and Jacq, C. (2002) Genome-wide analysis of mRNAs targeted to yeast mitochondria. EMBO Rep. 3, 159–164.PubMedGoogle Scholar
  30. 30.
    Söllner, T., Griffiths, G., Pfaller, R., Pfanner, N., and Neupert, W. (1989) MOM19, an import receptor for mitochondrial precursor proteins. Cell 59, 1061–1070.PubMedGoogle Scholar
  31. 31.
    Söllner, T., Pfaller, R., Griffiths, G., Pfanner, N., and Neupert W. (1990) A mitochondrial import receptor for the ADP/ATP carrier. Cell 62, 107–115.PubMedGoogle Scholar
  32. 32.
    Hines, V., Brandt, A., Griffiths, G., Horstmann, H., Brütsch, H., and Schatz, G. (1990) Protein import into yeast mitochondria is accelerated by the outer membrane protein MAS70. EMBO J. 9, 3191–3200.PubMedGoogle Scholar
  33. 33.
    Lithgow, T., Junne, T., Suda, K., Gratzer, S., and Schatz G. (1994) The mitochondrial outer membrane protein Mas22p is essential for protein import and viability of yeast. Proc. Natl. Acad. Sci. USA 91, 11973–11977.PubMedGoogle Scholar
  34. 34.
    Abe, Y., Shodai, T., Muto, T., et al. (2000) Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100, 551–560.PubMedGoogle Scholar
  35. 35.
    Bolliger, L., Junne, T., Schatz, G., and Lithgow, T. (1995) Acidic receptor domains on both sides of the outer membrane mediate translocation of precursor proteins into yeast mitochondria. EMBO J. 14, 6318–6326.PubMedGoogle Scholar
  36. 36.
    Hönlinger, A., Kübrich, M., Moczko, M., et al. (1995) The mitochondrial receptor complex: Mom22 is essential for cell viability and directly interacts with preproteins. Mol. Cell. Biol. 15, 3382–3389.PubMedGoogle Scholar
  37. 37.
    van Wilpe, S., Ryan, M. T., Hill, K., et al. (1999) Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase . Nature 401, 485–489.PubMedGoogle Scholar
  38. 38.
    Model, K., Prinz, T., Ruiz, T., et al. (2002) Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex . J. Mol. Biol. 316, 657–666.PubMedGoogle Scholar
  39. 39.
    Keil, P., Weinzierl, A., Kiebler, M., Dietmeier, K., Söllner, T., and Pfanner, N. (1993) Biogenesis of the mitochondrial receptor complex. Two receptors are required for binding of MOM38 to the outer membrane surface. J. Biol. Chem. 268, 19177–19180.PubMedGoogle Scholar
  40. 40.
    Krimmer, T., Rapaport, D., Ryan, M. T., et al. (2001) Biogenesis of porin of the outer mitochondrial membrane involves an import pathway via receptors and the general import pore of the TOM complex. J. Cell. Biol. 152, 289–300.PubMedGoogle Scholar
  41. 41.
    Young, J. C., Hoogenraad, N. J., and Hartl, F. U. (2003) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50.PubMedGoogle Scholar
  42. 42.
    Bömer. U., Pfanner, N. and Dietmeier, K. (1996) Identification of a third yeast mitochondrial Tom protein with tetratrico peptide repeats. FEBS Lett. 382, 153–158.PubMedGoogle Scholar
  43. 43.
    Schlossmann, J., Lill, R., Neupert, W., and Court, D. A. (1996) Tom71, a novel homologue of the mitochondrial preprotein receptor Tom70. J. Biol. Chem. 271, 17890–17895.PubMedGoogle Scholar
  44. 44.
    Baker, K. P., Schaniel, A., Vestweber, D., and Schatz, G. (1990) A yeast mitochondrial outer membrane protein essential for protein import and cell viability. Nature 348, 605–609.PubMedGoogle Scholar
  45. 45.
    Hill, K., Model, K., Ryan, M.,T., et al. (1998) Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516–521.PubMedGoogle Scholar
  46. 46.
    Model, K., Meisinger, C., Prinz, T., et al. (2001) Multistep assembly of the protein import channel of the mitochondrial outer membrane. Nat. Struct. Biol. 8, 361–370.PubMedGoogle Scholar
  47. 47.
    Rapaport, D. (2005) How does the TOM complex mediate insertion of precursor proteins into the mitochondrial outer membrane? J. Cell. Biol. 171, 419–423.PubMedGoogle Scholar
  48. 48.
    Künkele, K.,P., Heins, S., Dembowski, M., et al. (1998) The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 1009–1019.PubMedGoogle Scholar
  49. 49.
    Schwartz, M. P. and Matouschek, A. (1999) The dimensions of the protein import channels in the outer and inner mitochondrial membranes. Proc. Natl. Acad. Sci. USA 96, 13086–13090.PubMedGoogle Scholar
  50. 50.
    Hoppins, S. C. and Nargang, F. E. (2004) The Tim8-Tim13 complex of Neurospora crassa functions in the assembly of proteins into both mitochondrial membranes . J. Biol. Chem . 279, 12396–12405.PubMedGoogle Scholar
  51. 51.
    Wiedemann, N., Truscott, K.,N., Pfannschmidt, S., Guiard, B., Meisinger, C., and Pfanner, N. (2004) Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: intermembrane space components are involved in an early stage of the assembly pathway. J. Biol. Chem. 279, 18188–18194.PubMedGoogle Scholar
  52. 52.
    Kozjak, V., Wiedemann, N., Milenkovic, D., et al. (2003) An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J. Biol. Chem. 278, 48520–48523.PubMedGoogle Scholar
  53. 53.
    Paschen, S. A., Waizenegger, T., Stan, T., et al. (2003) Evolutionary conservation of biogenesis of ß -barrel membrane proteins. Nature 426, 862–866.PubMedGoogle Scholar
  54. 54.
    Gentle, I., Gabriel, K., Beech, P., Waller, R., and Lithgow, T. (2004) The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J. Cell Biol. 164, 19–24.PubMedGoogle Scholar
  55. 55.
    Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M., and Tommassen, J. (2003) Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265.PubMedGoogle Scholar
  56. 56.
    Milenkovic, D., Kozjak, V., Wiedemann, N., et al. (2004) Sam35 of the mitochondrial protein sorting and assembly machinery is a peripheral outer membrane protein essential for cell viability. J. Biol. Chem. 279, 22781–22785.PubMedGoogle Scholar
  57. 57.
    Waizenegger, T., Habib, S. J., Lech, M., et al. (2004) Tob38, a novel essential component in the biogenesis of ß -barrel proteins of mitochondria. EMBO Rep. 5, 704–709.PubMedGoogle Scholar
  58. 58.
    Ishikawa, D., Yamamoto, H., Tamura, Y., Moritoh, K., and Endo, T. (2004) Two novel proteins in the mitochondrial outer membrane mediate ß -barrel protein assembly. J. Cell Biol. 166, 621–627.PubMedGoogle Scholar
  59. 59.
    Meisinger, C., Rissler, M., Chacinska, A., et al. (2004) The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell 7, 61–71.PubMedGoogle Scholar
  60. 60.
    Johnson, A. E. and van Waes, M. A. (1999) The translocon: a dynamic gateway at the ER membrane. Annu. Rev. Cell Dev. Biol. 15, 799–842.PubMedGoogle Scholar
  61. 61.
    Sadlish, H., Pitonzo, D., Johnson, A. E., and Skach, W. R. (2005) Sequential triage of transmembrane segments by Sec61α during biogenesis of a native multispanning membrane protein. Nat. Struct. Mol. Biol. 12, 870–878.PubMedGoogle Scholar
  62. 62.
    Geissler, A., Chacinska, A., Truscott, K. N., et al. (2002) The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel. Cell 111, 507–518.PubMedGoogle Scholar
  63. 63.
    Yamamoto, H., Esaki, M., Kanamori, T., Tamura, Y., Nishikawa, S., and Endo, T. (2002) Tim50 is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes. Cell 111, 519–528.PubMedGoogle Scholar
  64. 64.
    Truscott, K. N., Kovermann, P., Geissler, A., et al. (2001) A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nat. Struct. Biol. 8, 1074–1082.PubMedGoogle Scholar
  65. 65.
    Geissler, A., Krimmer, T., Bömer, U., Guiard, B., Rassow, J., and Pfanner, N. (2000) Membrane potential-driven protein import into mitochondria. The sorting sequence of cytochrome b_2modulates the Δ ψ -dependence of translocation of the matrix-targeting sequence. Mol. Biol. Cell 11, 3977–3391.PubMedGoogle Scholar
  66. 66.
    Schneider, A., Behrens, M., Scherer, P., Pratje, E., Michaelis, G., and Schatz, G. (1991) Inner membrane protease I, an enzyme mediating intramitochondrial protein sorting in yeast. EMBO J. 10, 247–254.PubMedGoogle Scholar
  67. 67.
    Nunnari, J., Fox, T. D., and Walter, P. (1993) A mitochondrial protease with two catalytic subunits of nonoverlapping specificities. Science 262, 1997–2004.PubMedGoogle Scholar
  68. 68.
    Esser, K, Pratje, E., and Michaelis, G. (1996) SOM 1, a small new gene required for mitochondrial inner membrane peptidase function in Saccharomyces cerevisiae. Mol. Gen. Genet. 252, 437–445.PubMedGoogle Scholar
  69. 69.
    Arlt, H., Tauer, R., Feldmann, H., Neupert, W., and Langer, T. (1996) The YTA10-12 complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria. Cell 85, 875–885.PubMedGoogle Scholar
  70. 70.
    Esser, K., Tursun, B., Ingenhoven, M., Michaelis, G., and Pratje, E. (2002) A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1. J. Mol. Biol. 323, 835–843.PubMedGoogle Scholar
  71. 71.
    Schneider, H. C., Berthold, J., Bauer, M. F., et al. (1994) Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 371, 768–774.PubMedGoogle Scholar
  72. 72.
    Rassow, J., Maarse, A. C., Krainer, E., et al. (1994) Mitochondrial protein import: biochemical and genetic evidence for interaction of matrix hsp70 and the inner membrane protein MIM44. J. Cell Biol. 127, 1547–1556.PubMedGoogle Scholar
  73. 73.
    Kronidou, N. G., Oppliger, W., Bolliger, L., et al. (1994) Dynamic interaction between Isp45 and mitochondrial Hsp70 in the protein import system of the yeast mitochondrial inner membrane. Proc. Natl. Acad. Sci. USA 91, 12818–12822.PubMedGoogle Scholar
  74. 74.
    Strub, A., Lim, J. H., Pfanner, N., and Voos, W. (2000) The mitochondrial protein import motor. Biol. Chem. 381, 943–949.PubMedGoogle Scholar
  75. 75.
    D’Silva, P. D., Schilke, B., Walter, W., andrew, A., and Craig, E. A. (2003) J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proc. Natl. Acad. Sci. USA 100, 13839–13844.PubMedGoogle Scholar
  76. 76.
    Truscott, K. N., Voos, W., Frazier, A. E., et al. (2003) A J-protein is an essential subunit of the presequence translocase-associated protein import motor of mitochondria. J. Cell Biol. 163, 707–713PubMedGoogle Scholar
  77. 77.
    Mokranjac, D., Sichting, M., Neupert, W. and Hell, K. (2003) Tim14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria. EMBO J. 22, 4945–4956.PubMedGoogle Scholar
  78. 78.
    Mokranjac, D., Sichting, M., Popov-Celeketic, D., Berg, A., Hell, K. and Neupert, W. (2005) The import motor of the yeast mitochondrial TIM23 preprotein translocase contains two different J proteins, Tim14 and Mdj2. J. Biol. Chem. 280, 31608–31614.PubMedGoogle Scholar
  79. 79.
    Li, Y., Dudek, J., Guiard, B., Pfanner, N., Rehling, P., and Voos, W. (2004) The presequence translocase-associated protein import motor of mitochondria. Pam16 functions in an antagonistic manner to Pam18. J. Biol. Chem. 279, 38047–38054.PubMedGoogle Scholar
  80. 80.
    van der Laan, M., Chacinska, A., Lind, M., et al. (2005) Pam17 is required for architecture and translocation activity of the mitochondrial protein import motor. Mol. Cell Biol. 25, 7449–7458.PubMedGoogle Scholar
  81. 81.
    Isaya, G., Miklos, D., and Rollins, R.A. (1994) MIP1, a new yeast gene homologous to the rat mitochondrial intermediate peptidase gene, is required for oxidative metabolism in Saccharomyces cerevisiae. Mol. Cell Biol. 14, 5603–5616.PubMedGoogle Scholar
  82. 82.
    Voos, W. and Röttgers, K. (2002) Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim. Biophys. Acta 1592, 51–62.PubMedGoogle Scholar
  83. 83.
    Pfanner, N. and Neupert, W. (1987) Distinct steps in the import of ADP/ATP carrier into mitochondria. J. Biol. Chem. 262, 7528–7536.PubMedGoogle Scholar
  84. 84.
    Truscott, K. N., Wiedemann, N., Rehling, P., et al. (2002) Mitochondrial import of the ADP/ATP carrier: the essential TIM complex of the intermembrane space is required for precursor release from the TOM complex. Mol. Cell Biol. 22, 7780–7789.PubMedGoogle Scholar
  85. 85.
    Sirrenberg, C., Endres, M., Fölsch, H., Stuart, R.A., Neupert, W., and Brunner, M. (1998) Carrier protein import into mitochondria mediated by the intermembrane proteins Tim10/Mrs11 and Tim12/Mrs5. Nature 391, 912–915.PubMedGoogle Scholar
  86. 86.
    Koehler, C. M., Merchant, S., Oppliger, W., et al. (1998) Tim9p, an essential partner subunit of Tim10p for the import of mitochondrial carrier proteins. EMBO J. 17, 6477–6486.PubMedGoogle Scholar
  87. 87.
    Adam, A., Endres, M., Sirrenberg, C., Lottspeich, F., Neupert, W., and Brunner, M. (1999) Tim9, a new component of the TIM22.54 translocase in mitochondria. EMBO J. 18, 313–319.PubMedGoogle Scholar
  88. 88.
    Paschen, S. A., Rothbauer, U., Kaldi, K., Bauer, M. F., Neupert, W., and Brunner, M. (2000) The role of the TIM8-13 complex in the import of Tim23 into mitochondria. EMBO J. 19, 6392–6400.PubMedGoogle Scholar
  89. 89.
    Curran S. P., Leuenberger, D., Oppliger, W. and Koehler, C. M. (2002) The Tim9p-Tim10p complex binds to the transmembrane domains of the ADP/ATP carrier. EMBO J. 21, 942–953.PubMedGoogle Scholar
  90. 90.
    Webb, C. T., Gormann, M. A., Lazarou, M., Ryan, M. T., and Gulbis, J. M. (2006) Crystal structure of the mitochondrial chaperone TIM910 reveals a six-bladed α -propeller. Mol. Cell 21, 123–133.PubMedGoogle Scholar
  91. 91.
    Wiedemann, N., Pfanner, N., and Chacinska, A. (2006) Chaperoning through the Mitochondrial Intermembrane space. Mol. Cell 21,145–148.PubMedGoogle Scholar
  92. 92.
    Rehling, P., Brandner, K., and Pfanner, N. (2004) Mitochondrial import and the twin-pore translocase. Nat. Rev. Mol. Cell Biol. 5, 519–530.PubMedGoogle Scholar
  93. 93.
    Kerscher, O., Holder, J., Srinivasan, M., Leung, R. S., and Jensen, R. E. (1997) The Tim54p-Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. J. Cell Biol. 139, 1663–1675.PubMedGoogle Scholar
  94. 94.
    Kovermann, P., Truscott, K. N., Guiard, B., et al. (2002) Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel. Mol. Cell 9, 363–373.PubMedGoogle Scholar
  95. 95.
    Kerscher, O., Sepuri, N. B. and Jensen, R. E. (2000) Tim18p is a new component of the Tim54p-Tim22p translocon in the mitochondrial inner membrane. Mol. Biol. Cell 11, 103–116.PubMedGoogle Scholar
  96. 96.
    Naoé, M., Ohwa, Y., Ishikawa, D., et al. (2004) Identification of Tim40 that mediates protein sorting to the mitochondrial intermembrane space. J. Biol. Chem. 279, 47815–47821.PubMedGoogle Scholar
  97. 97.
    Terziyska, N., Lutz, T., Kozany, C., et al. (2005) Mia40, a novel factor for protein import into the intermembrane space of mitochondria is able to bind metal ions. FEBS Lett. 579, 179–184.PubMedGoogle Scholar
  98. 98.
    Mesecke, N., Terziyska, N., Kozany, C., et al. (2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121, 1059–1069.PubMedGoogle Scholar
  99. 99.
    Curran, S. P., Leuenberger, D., Leverich, E. P., Hwang, D. K., Beverly, K. N., and Koehler, C. M. (2004) The role of Hot13p and redox chemistry in the mitochondrial TIM22 import pathway. J. Biol. Chem. 279, 43744–43751.PubMedGoogle Scholar
  100. 100.
    Rissler, M., Wiedemann, N., Pfannschmidt, S., et al. (2005) The essential mitochondrial protein Erv1 cooperates with Mia40 in biogenesis of intermembrane space proteins. J. Mol. Biol. 353, 485–492.PubMedGoogle Scholar
  101. 101.
    Allen, S., Balabanidou, V., Sideris, D. P., Lisowsky, T., and Tokatlidis, K. (2005) Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. J. Mol. Biol. 353, 937–944.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Kipros Gabriel
    • 1
  • Nikolaus Pfanner
    • 1
  1. 1.Institut für Biochemie und Molekularbiologie, Universität Freiburg, Freiburg, Germany. Department of GeneticsUniversity of MelbourneMelbourneAustralia

Personalised recommendations