Trafficking Through the Early Secretory Pathway of Mammalian Cells

  • Theresa H. Ward
Part of the Methods in Molecular Biology™ book series (MIMB, volume 390)

The use of green fluorescent protein (GFP) chimeras to illuminate the secretory pathway in living cells has provided a wealth of information on the mechanisms of protein retention, sorting, and recycling. A wide variety of microscopic techniques, including time-lapse imaging, double-labeling, quantitation, photobleaching, and energy transfer approaches, have been utilized to explore the organization of the early secretory pathway. In this chapter we focus on the application of GFP technology to gain insight into the dynamics of ERGIC-53, a putative cargo receptor localized to the early secretory pathway, and the way in which photobleaching approaches have provided insight into its transport.

Key Words

Confocal microscopy green fluorescent protein secretory pathway endoplasmic reticulum ER exit Golgi microtubules ERGIC-53. 



This work was supported by a Royal Society Dorothy Hodgkin Fellowship.


  1. 1.
    Altan-Bonnet, N., Sougrat, R., and Lippincott-Schwartz, J. (2004) Molecular basis for Golgi maintenance and biogenesis. Curr. Opin. Cell Biol. 16, 364–372.CrossRefPubMedGoogle Scholar
  2. 2.
    Lee, M. C. S., Miller, E. A., Goldberg, J., Orci, L., and Schekman, R. (2004) Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123.CrossRefPubMedGoogle Scholar
  3. 3.
    Ward, T. H. and Lippincott-Schwartz, J. (2006) The uses of green fluorescent protein in mammalian cells, in Green Fluorescent Protein: Properties, Applications, and Protocols, 2nd ed. ( Chalfie, M., and Kain, S. R., eds.), John Wiley, Hoboken, NJ, pp. 305–337.Google Scholar
  4. 4.
    Schweizer, A., Fransen, J. A., Bächi, T., Ginsel, L., and Hauri, H. P. (1988) Identification, by a monoclonal antibody, of a 53-kDa protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J. Cell Biol. 107, 1643–1653.CrossRefPubMedGoogle Scholar
  5. 5.
    Lahtinen, U., Dahllöf, B., and Saraste, J. (1992) Characterization of a 58 kDa cis-Golgi protein in pancreatic exocrine cells. J. Cell Sci. 103, 321–333.PubMedGoogle Scholar
  6. 6.
    Hauri, H. P., Kappeler, F., Andersson, H., and Appenzeller, C. (2000) ERGIC-53 and traffic in the secretory pathway. J. Cell Sci. 113, 587–596.PubMedGoogle Scholar
  7. 7.
    Klumperman, J., Schweizer, A., Clausen, H., et al. (1998) The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. J. Cell Sci. 111, 3411–3425.PubMedGoogle Scholar
  8. 8.
    Kappeler, F., Klopfenstein, D. R. C., Foguet, M., Paccaud, J. P., and Hauri, H.-P. (1997) The recycling of ERGIC-53 in the early secretory pathway: ERGIC-53 carries a cytosolic endoplasmic reticulum-exit determinant interacting with COPII. J. Biol. Chem. 272, 31801–31808.CrossRefPubMedGoogle Scholar
  9. 9.
    Itin, C., Schindler, R., and Hauri, H.-P. (1995) Targeting of protein ERGIC-53 to the ER/ERGIC/cis-Golgi recycling pathway. J. Cell Biol. 131, 57–67.CrossRefPubMedGoogle Scholar
  10. 10.
    Ward, T. H., Polishchuk, R. S., Caplan, S., Hirschberg, K., and Lippincott-Schwartz, J. (2001) Maintenance of Golgi structure and function depends on the integrity of ER export. J. Cell Biol. 155, 557–570.CrossRefPubMedGoogle Scholar
  11. 11.
    Lippincott-Schwartz, J., Altan-Bonnet, N., and Patterson, G. H. (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat. Cell Biol. 5, S7–S14.CrossRefGoogle Scholar
  12. 12.
    Nufer, O., Kappeler, F., Guldbrandsen, S., and Hauri, H.-P. (2003) ER export of ERGIC-53 is controlled by cooperation of targeting determinants in all three of its domains. J. Cell Sci. 116, 4429–4440.CrossRefPubMedGoogle Scholar
  13. 13.
    Lippincott-Schwartz, J., Donaldson, J. G., Schweizer, A., et al. (1990) Microtubule-dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60, 821–836.CrossRefPubMedGoogle Scholar
  14. 14.
    Saraste, J. and Svensson, K. (1991) Distribution of the intermediate elements operating in ER to Golgi transport. J. Cell Sci. 100, 415–430.PubMedGoogle Scholar
  15. 15.
    Phair, R. D. and Misteli, T. (2001) Kinetic modelling approaches to in vivo imaging. Nat. Rev. Mol. Cell Biol. 2, 898–907.CrossRefPubMedGoogle Scholar
  16. 16.
    Klausner, R. D., Donaldson, J. G., and Lippincott-Schwartz, J. (1992) Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116, 1071–1080.CrossRefPubMedGoogle Scholar
  17. 17.
    Cole, N. B., Sciaky, N., Marotta, A., Song, J., and Lippincott-Schwartz, J. (1996) Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell 7, 631–650.PubMedGoogle Scholar
  18. 18.
    Sannerud, R., Marie, M., Nizak, C., et al. (2006) Rab1 defines a novel pathway connecting the pre-Golgi intermediate compartment with the cell periphery. Mol. Biol. Cell 17, 1514–1526.CrossRefPubMedGoogle Scholar
  19. 19.
    Nehls, S., Snapp, E. L., Cole, N. B., et al. (2000) Dynamics and retention of misfolded proteins in native ER membranes. Nat. Cell Biol. 2, 288–295.CrossRefPubMedGoogle Scholar
  20. 20.
    Ben-Tekaya, H., Miura, K., Pepperkok, R., and Hauri, H.-P. (2005) Live imaging of bidirectional traffic from the ERGIC. J. Cell Sci. 118, 357–367.CrossRefPubMedGoogle Scholar
  21. 21.
    Zacharias, D. A., Violin, J. D., Newton, A. C., and Tsien, R. Y. (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916.CrossRefPubMedGoogle Scholar
  22. 22.
    Campbell, R. E., Tour, O., Palmer, A. E., et al. (2002) A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882.CrossRefPubMedGoogle Scholar
  23. 23.
    Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G, Palmer, A. E., and Tsien, R. Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572.CrossRefPubMedGoogle Scholar
  24. 24.
    Zaal, K. J. M., Smith, C. L., Polishchuk, R. S., et al. (1999) Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 99, 589–601.CrossRefPubMedGoogle Scholar
  25. 25.
    Gerlich, D., Beaudouin, J., Kalbfuss, B., Daigle, N., Eils, R., and Ellenberg, J. (2003) Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112, 751–764.CrossRefPubMedGoogle Scholar
  26. 26.
    Cole, N. B., Smith, C. L., Sciaky, N., Terasaki, M., Edidin, M., and Lippincott- Schwartz, J. (1996) Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797–801.CrossRefPubMedGoogle Scholar
  27. 27.
    Sciaky, N., Presley, J., Smith, C., et al. (1997) Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J. Cell Biol. 139, 1137–1155.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Theresa H. Ward
    • 1
  1. 1.Department of Infectious & Tropical DiseasesLondon School of Hygiene & Tropical MedicineLondonUK.

Personalised recommendations