Baculovirus and Insect Cell Expression Protocols pp 155-185

Part of the Methods in Molecular Biology™ book series (MIMB, volume 388) | Cite as

Development of Serum-Free Media for Lepidopteran Insect Cell Lines

  • Spiros N. Agathos


Lepidopteran insect cell culture technology has progressed to the point of becoming an essential part of one of the most successful eukaryotic expression systems and is increasingly used industrially on a large scale. Therefore, there is a constant need for convenient and low-cost culture media capable of supporting good insect cell growth and ensuring high yield of baculovirus as well as the strong expression of recombinant proteins. Vertebrate sera or invertebrate hemolymph were essential supplements in first-generation insect cell media. These supplements, however, are cumbersome and expensive for routine large-scale culture; thus, their use is now circumvented by substituting the essential growth factors present in these supplements with serum-free substances. Such non-serum supplements are typically of non-animal origin and include protein hydrolysates, lipid emulsions, and specialized substances (e.g., surfactants and shear damage protecting chemicals). These supplements need to complement the defined, synthetic basal medium to ensure that the fundamental nutritional needs of the cells are satisfied. Although there is a significant number of proprietary serum-free and low-protein or protein-free media on the market, the lack of information concerning their detailed composition is a drawback in their adoption for different applications, including their adaptation to the metabolic and kinetic analysis and monitoring of a given insect cell based bioprocess. Hence, there is wide appeal for formulating serum-free media based on a rational assessment of the metabolic requirements of the lepidopteran cells during both the growth and the production phases. Techniques such as statistical experimental design and genetic algorithms adapted to the cellular behavior and the bioreactor operation mode (batch, fed-batch, or perfusion) permit the formulation of versatile serum- and protein-free media. These techniques are illustrated with recent developments of serum-free media for the cultivation of commercially important Spodoptera frugiperda and Trichoplusia ni cell lines.

Key Words

Culture media serum serum-free animal-free protein-free protein hydrolysates factorial experimental design genetic algorithm 


  1. 1.
    Kost, T. A., Condreay, J. P., and Jarvis, D. L. (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23, 567–575.PubMedCrossRefGoogle Scholar
  2. 2.
    Ikonomou, L., Schneider, Y.-J., and Agathos, S. N. (2003) Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 62, 1–20.PubMedCrossRefGoogle Scholar
  3. 3.
    Smith, G. E., Summers, M. D., and Fraser, M. J. (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol. 3, 2156–2165.PubMedGoogle Scholar
  4. 4.
    Pennock, G. D., Shoemaker, C., and Miller, L. K. (1984) Strong and regulated expression of Escherichia coli beta-galactosidase in insect cells with a baculovirus vector. Mol. Cell. Biol. 4, 399–406.PubMedGoogle Scholar
  5. 5.
    Vaughn, J. L., Goodwin, R. H., Tompkins, G. J., and McCawley, P. (1977) The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 13, 213–217.PubMedCrossRefGoogle Scholar
  6. 6.
    Hink, W. F. (1970) Established insect cell line from the cabbage looper, Trichoplusia ni. Nature 226, 466–467.PubMedCrossRefGoogle Scholar
  7. 7.
    Granados, R. R., Guoxun, L., Derksen, A. C. G., and McKenna, K. A. (1994) A new insect cell line from Trichoplusia ni (BTI-Tn-5B1-4) susceptible to Trichoplusia ni single enveloped nuclear polyhedrosis virus. J. Invertebr. Pathol. 64, 260–266.CrossRefGoogle Scholar
  8. 8.
    Granados, R. R. (1994) Cell line isolated from larval midgut tissue of Trichoplusia ni. US Patent 5,298,418.Google Scholar
  9. 9.
    Davis, T. R., Wickham, T. J., McKenna, K. A., Granados, R. R., Shuler, M. L., and Wood, H. A. (1993) Comparative recombinant protein production of eight insect cell lines. In Vitro Cell. Dev. Biol. Animal 29, 388–390.CrossRefGoogle Scholar
  10. 10.
    Grace, T. D. C. (1962) Establishment of four strains of cells from insect tissues grown in vitro. Nature 195, 788–789.PubMedCrossRefGoogle Scholar
  11. 11.
    Gardiner, G. R. and Stockdale, H. (1975) Two tissue culture media for production of lepidopteran cells and nuclear polyhedrosis virus. J. Invertebr. Pathol. 25, 363–370.CrossRefGoogle Scholar
  12. 12.
    Weiss, S. A., Smith, G. C., Kalter, S. S., and Vaughn, J. L. (1981) Improved method for the production of insect cell cultures in large volume. In Vitro 17, 495–502.CrossRefGoogle Scholar
  13. 13.
    Maiorella, B., Inlow, D., Shauger, A., and Harano, D. (1988) Large-scale insect cell-culture for recombinant protein production. Bio/Technology 6, 1406–1410.CrossRefGoogle Scholar
  14. 14.
    Hink, W. F. (1991) A serum-free medium for the culture of insect cells and production of recombinant proteins. In Vitro Cell. Dev. Biol. 27, 397–401.CrossRefGoogle Scholar
  15. 15.
    Weiss, S., Grefrath, P., Whitford, W., Pfohl, J., Fike, R., and Jayme, D. (1990) Growth of insect cells in a serum-free medium and production of recombinant proteins using various bioreactors. In Vitro Cell. Dev. Biol. 26, 30A.CrossRefGoogle Scholar
  16. 16.
    Godwin, G., Danner, D., and Gorfien, S. (1995) Express Five™ SFM: a new serum-free medium for growth of BTI-TN-5B1-4 cells and expression of recombinant proteins. Focus 17, 58–60.Google Scholar
  17. 17.
    Godwin, G., Belisle, B., DeGiovanni, A., Khler, J., Gong, T., and Wojchowski, D. (1990) Serum-free growth and recombinant EPO expression in Spodoptera frugiperda (Sf-9) insect cells. In Vitro Cell. Dev. Biol. 26, 19A.Google Scholar
  18. 18.
    Barnett, B. B. (1998) Insect cell culture technology. Art to Science 17, 1–7.Google Scholar
  19. 19.
    Ikonomou, L., Bastin, G., Schneider, Y.-J., and Agathos, S. N. (2001) Design of an efficient medium for insect cell growth and recombinant protein production. In Vitro Cell. Dev. Biol. Anim. 37, 549–559.PubMedCrossRefGoogle Scholar
  20. 20.
    Schlaeger, E.-J., Foggetta, M., Vonach, J. M., and Christensen, K. (1993) SF-1, a low cost culture medium for the production of recombinant proteins in baculovirus infected insect cells. Biotechnol. Tech. 7, 183–188.Google Scholar
  21. 21.
    Schlaeger, E.-J. (1996) Medium design for insect cell culture. Cytotechnology 20, 57–70.CrossRefGoogle Scholar
  22. 22.
    Donaldson, M. S. and Shuler, M. L. (1998) Low-cost serum-free medium for the BTI Tn5B1-4 insect cell line. Biotechnol. Prog. 14, 573–579.PubMedCrossRefGoogle Scholar
  23. 23.
    Jan, D. C.-H., Jones, S. J., Emery, A. N., and Al-Rubeai, M. (1994) Peptone, a low-cost growth promoting nutrient for intensive animal cell culture. Cytotechnology 16, 17–26.PubMedCrossRefGoogle Scholar
  24. 24.
    O’Reilly, D. R., Miller, L. K., and Luckow, V. A. (1992) Baculovirus Expression Vectors: A Laboratory Manual. W.H. Freeman and Company, New York.Google Scholar
  25. 25.
    Weiss, S. A., Godwin, G. P., Gorfien, S. F., and Whitford, W. G. (1995) Insect cell culture in serum-free media, in Baculovirus Expression Protocols, (Richardson, C. D., ed.), Humana Press, Totowa, NJ, pp. 79–95.CrossRefGoogle Scholar
  26. 26.
    Frank, M. B. (1998) Insect cell culture and baculovirus infections, in Molecular Biology Protocols, (Frank, M. B., ed.),, Oklahoma City, OK.Google Scholar
  27. 27.
    Dee, K. U., Shuler, M. L., and Wood, H. A. (1997) Inducing single-cell suspension of BTI-TnB1-4 insect cells: 1. The use of sulfated polyanions to prevent cell aggregation and enhance recombinant protein production. Biotechnol. Bioeng. 54, 191–205.PubMedCrossRefGoogle Scholar
  28. 28.
    Franek, F., Hohenwarter, O., and Katinger, H. (2000) Plant protein hydrolysates: preparation of defined peptide fractions promoting growth and production in animal cell cultures. Biotechnol. Prog. 16, 688–692.PubMedCrossRefGoogle Scholar
  29. 29.
    Reiter, M., Mundt, W., Dorner, F., Grillberger, L., and Mitterer, A. (2001) Patent WO 01/23527 awarded to Baxter Aktiengesellschaft, Austria.Google Scholar
  30. 30.
    Jesionowski, G. A. and Ataai, M. M. (1997) An efficient medium for high protein production in the insect cell/baculovirus expression system. Biotechnol. Prog. 13, 355–360.CrossRefGoogle Scholar
  31. 31.
    Chan, L. C. L., Greenfield, P. F., and Reid, S. (1998) Optimising fed-batch production of recombinant proteins using the baculovirus expression vector system. Biotechnol. Bioeng. 59, 178–188.PubMedCrossRefGoogle Scholar
  32. 32.
    Kim, J. H., Kim, E. J., and Park, T. H. (2000) Fed-batch culture of insect cells with exponential feeding of amino acid and yeastolate solution. Bioprocess Eng. 23, 367–370.CrossRefGoogle Scholar
  33. 33.
    Bédard, C., Kamen, A., Tom, R., and Massie, B. (1994) Maximization of recombinant protein yield in the insect cell/baculovirus system by one-time addition of nutrients to high-density batch cultures. Cytotechnology 15, 129–138.PubMedCrossRefGoogle Scholar
  34. 34.
    Bédard, C., Perret, S., and Kamen, A. A. (1997) Fed-batch culture of Sf-9 cells supports 3 × 107 cells per ml and improves baculovirus-expressed recombinant protein yields. Biotechnol. Lett. 19, 629–632.CrossRefGoogle Scholar
  35. 35.
    Nguyen, B., Jarnagin, K., Williams, S., Chan, H., and Barnett, J. (1993) Fed-batch culture of insect cells: a method to increase the yield of recombinant human nerve growth factor (rhNGF) in the baculovirus expression system. J. Biotechnol. 31, 205–217.PubMedCrossRefGoogle Scholar
  36. 36.
    Wu, J. and Lee, K. D. (1998) Growth promotion by yeastolate and related components on insect cells. Biotechnol. Tech. 12, 67–70.CrossRefGoogle Scholar
  37. 37.
    Eriksson, U. and Häggström, L. (2005) Yeast extract from Express Five serum-free medium contains factors at about 35 kDa, essential for growth of Trichoplusia ni insect cells. Biotechnol. Lett. 27, 1623–1627.PubMedCrossRefGoogle Scholar
  38. 38.
    Lynn, D. E. (1996) Development and characterization of insect cell lines. Cytotechnology 20, 3–11.CrossRefGoogle Scholar
  39. 39.
    Ogonah, O. W., Freedman, R. B., Jenkins, N., Patel, K., and Rooney, B. C. (1996) Isolation and characterization of an insect cell line able to perform complex N-linked glycosylation on recombinant proteins. Bio/Technology 14, 197–202.CrossRefGoogle Scholar
  40. 40.
    Pant, U., Athawale, S. S., Sudeep, A. B., and Banerjee, K. (1997) A new cell line from larval ovaries of Spodoptera litura. In Vitro Cell. Dev. Biol. 33, 161–163.CrossRefGoogle Scholar
  41. 41.
    McKenna, K. A., Hong, H., van Numen, E., and Granados, R. R. (1998) Establishment of new Trichoplusia ni cell lines in serum-free medium for baculovirus and recombinant protein production. J. Invertebr. Pathol. 71, 82–90.CrossRefGoogle Scholar
  42. 42.
    McIntosh, A. H., Christian, P. D., and Grasela, J. J. (1999) The establishment of heliothine cell lines and their susceptibility to two baculoviruses. In Vitro Cell. Dev. Biol. 35, 94–97.CrossRefGoogle Scholar
  43. 43.
    Lin, G. Y., Li, G. X., Granados, R. R., and Blissard, G. W. (2001) Stable cell lines expressing baculovirus P35: resistance to apoptosis and nutrient stress, and increased glycoprotein secretion. In Vitro Cell. Dev. Biol. 37, 293–302.Google Scholar
  44. 44.
    Bédard, C., Tom, R., and Kamen, A. (1993) Growth, nutrient consumption, and end-product accumulation in Sf-9 and BTI-EAA insect cell cultures: insights into growth limitation and metabolism. Biotechnol. Prog. 9, 615–624.PubMedCrossRefGoogle Scholar
  45. 45.
    Öhman, L., Ljunggren, J., and Häggström, L. (1995) Induction of a metabolic switch in insect cells by substrate-limited fed batch cultures. Appl. Microbiol. Biotechnol. 43, 1006–1013.PubMedCrossRefGoogle Scholar
  46. 46.
    Drews, M., Paalme, T., and Vilu, R. (1995) The growth and nutrient utilization of the insect cell line Spodoptera frugiperda Sf9 in batch and continuous culture. J. Biotechnol. 40, 187–198.CrossRefGoogle Scholar
  47. 47.
    Bhatia, R., Jesionowski, G., Ferrance, J., and Ataai, M. M. (1997) Insect cell physiology. Cytotechnology 24, 1–9.Google Scholar
  48. 48.
    Doverskog, M., Han, L., and Häggström, L. (1998) Cystine/cysteine metabolism in cultured Sf9 cells: influence of cell physiology. Cytotechnology 26, 91–102.CrossRefGoogle Scholar
  49. 49.
    Drews, M., Doverskog, M., Öhman, L., et al. (2000) Pathways of glutamine metabolism in Spodoptera frugiperda (Sf9) insect cells: evidence for the presence of the nitrogen assimilation system, and a metabolic switch by H-1/N-15 NMR. J. Biotechnol. 78, 23–37.PubMedCrossRefGoogle Scholar
  50. 50.
    Rhiel, M., Mitchell-Logean, C. M., and Murhammer, D. W. (1997) Comparison of Trichoplusia ni BTI-Tn-5B1-4 (High Five™) and Spodoptera frugiperda Sf-9 insect cell line metabolism in suspension cultures. Biotechnol. Bioeng. 55, 909–920.PubMedCrossRefGoogle Scholar
  51. 51.
    Benslimane, C., Elias, C. B., Hawari, J., and Kamen, A. (2005) Insights into the central metabolism of Spodoptera frugiperda (Sf9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5) insect cells by radiolabelling studies. Biotechnol. Prog. 21, 78–86.PubMedCrossRefGoogle Scholar
  52. 52.
    Ferrance, J. P., Goel, A., and Ataai, M. M. (1993) Utilization of glucose and amino acids in insect cell cultures: quantifying the metabolic flows within the primary pathways and medium development. Biotechnol. Bioeng. 42, 697–707.PubMedCrossRefGoogle Scholar
  53. 53.
    Mendonça, R. Z., Palomares, L. A., and Ramirez, O. T. (1999) An insight into insect cell metabolism through selective nutrient manipulation. J. Biotechnol. 72, 61–75.CrossRefGoogle Scholar
  54. 54.
    Reuveny, S., Kemp, C. W., Eppstein, L., and Shiloach, J. (1992) Carbohydrate metabolism in insect cell cultures during cell growth and recombinant protein production. Ann. NY Acad. Sci. 665, 230–237.PubMedCrossRefGoogle Scholar
  55. 55.
    Öhman, L., Alarcon, M., Ljunggren, J., Ramqvist, A.-K., and Häggström, L. (1996) Glutamine is not an essential amino acid for Sf-9 insect cells. Biotechnol. Lett. 18, 765–770.CrossRefGoogle Scholar
  56. 56.
    Radford, K. M., Reid, S., and Greenfield, P. F. (1997) Substrate limitation in the baculovirus expression vector system. Biotechnol. Bioeng. 56, 32–44.PubMedCrossRefGoogle Scholar
  57. 57.
    Montgomery, D. C. and Runger, G. C. (1999) Applied Statistics and Probability for Engineers. John Wiley and Sons, Inc., New York.Google Scholar
  58. 58.
    Marteijn, R. C. L., Jurrius, O., Dhont, J., de Gooijer, C. D., Tramper, J., and Martens, D. E. (2003) Optimization of a feed medium for fed-batch culture of insect cells using a genetic algorithm. Biotechnol. Bioeng. 81, 269–278.PubMedCrossRefGoogle Scholar
  59. 59.
    Holland, J. H. (1992) Adaptation in Natural and Engineered Systems: An Introductory Analysis With Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge, MA.Google Scholar
  60. 60.
    Weuster-Botz, D. (2000) Experimental design for fermentation media development: statistical design or global random search? J. Biosci. Bioeng. 90, 473–483.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Spiros N. Agathos
    • 1
  1. 1.Unit of BioengineeringUniversity of LouvainLouvain-la-NeuveBelgium

Personalised recommendations