Evaluation of the Insecticidal Efficacy of Wild-Type and Recombinant Baculoviruses

  • Huarong Li
  • Bryony C. Bonning
Part of the Methods in Molecular Biology™ book series (MIMB, volume 388)


A considerable amount of work has been done during the last 20 yr to genetically enhance the efficacy of baculovirus insecticides. Following construction of a genetically altered baculovirus, laboratory bioassays are used to quantify various parameters of insecticidal activity such as the median lethal concentration (or dose) required to kill 50% of infected larvae (LC50 or LD50), median survival time of larvae infected at a fixed dose (ST50), and feeding damage incurred by infected larvae. In this chapter, protocols are described for a variety of bioassays and corresponding data analyses for assessment of the insecticidal activity or host range of baculovirus insecticides. Methods are also provided for baculovirus inoculation of larvae using a microapplicator for determining ST50 or for examining physiological effects.

Key Words

Recombinant baculovirus insecticidal efficacy host range droplet feeding diet plug bioassay feeding damage microapplicator LC50 LD50 ST50 


  1. 1.
    Kamita, S. G., Kang, K.-D., Hammock, B. D., and Inceoglu, A. B. (2005) Genetically modified baculoviruses for pest insect control, in Comprehensive Molecular Insect Science, (Gilbert, L. I., Iatrou, K., and Gill, S. S., eds.), Elsevier, Oxford, UK, pp. 271–322.CrossRefGoogle Scholar
  2. 2.
    Harrison, R. L. and Bonning, B. C. (2001) Use of proteases to improve the insecticidal activity of baculoviruses. Biol. Control 20, 199–209.CrossRefGoogle Scholar
  3. 3.
    Prikhod’ko, G. G., Robson, M., Warmke, J. W., et al. (1996) Properties of three baculovirus-expressing genes that encode insect-selective toxins: µ-Aga-IV, As II, and Sh I. Biol. Control 7, 236–244.CrossRefGoogle Scholar
  4. 4.
    Harrison, R. L. and Bonning, B. C. (2000) Use of scorpion neurotoxins to improve the insecticidal activity of Rachiplusia ou multicapsid nucleopolyhedrovirus. Biol. Control 17, 191–201.CrossRefGoogle Scholar
  5. 5.
    McCutchen, B. F., Hoover, K., Preisler, H. K., et al. (1997) Interactions of recombinant and wild-type baculoviruses with classical insecticides and pyrethroidresistant tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 90, 1170–1180.PubMedGoogle Scholar
  6. 6.
    Hughes, P. R. and Wood, H. A. (1981) A synchronous peroral technique for the bioassay of insect viruses. J. Invertebr. Pathol. 37, 154–159.CrossRefGoogle Scholar
  7. 7.
    Finney, D. J. (1971) Probit Analysis. Cambridge University Press, London, UK.Google Scholar
  8. 8.
    LeOra-Software (1987) POLO-PC, A User’s Guide to Probit and Logit Analysis. LeOra Software, Berkeley, CA.Google Scholar
  9. 9.
    Russell, R. M., Robertson, J. L., and Savin, N. E. (1977) POLO: a new computer program for probit analysis. Bull Entomol. Soc. Am. 23, 209–213.Google Scholar
  10. 10.
    SAS-Institute (1990) SAS User’s Guide, Version 6, 4th ed. SAS Institute, Cary, NC.Google Scholar
  11. 11.
    Kalbfleisch, J. D. and Prentice, R. L. (1980) The statistical analysis of failure time data. Wiley, New York.Google Scholar
  12. 12.
    Bonning, B. C., Hoover, K., Duffey, S. S., and Hammock, B. D. (1995) Production of polyhedra of the Autographa californica nuclear polyhedrosis virus using the Sf21 and Tn5B1-4 cell lines and comparison with host-derived polyhedra by bioassay. J. Invertebr. Pathol. 66, 224–230.PubMedCrossRefGoogle Scholar
  13. 13.
    Wood, H. A., Trotter, K. M., Davis, T. R., and Hughes, P. R. (1993) Per os infectivity of preoccluded virions from polyhedrin-minus recombinant baculoviruses. J. Invertebr. Pathol. 62, 64–67.CrossRefGoogle Scholar
  14. 14.
    Wood, H. A., Hughes, P. R., and Shelton, A. (1994) Field studies of the coocclusion strategy with a genetically altered isolate of the Autographa californica nuclear polyhedrosis virus. Environ. Entomol. 23, 211–219.Google Scholar
  15. 15.
    Hughes, P. R., van Beek, N. A. M., and Wood, H. A. (1986) A modified droplet feeding method for rapid assay of Bacillus thuringiensis and baculoviruses of noctuid larvae. J. Invertebr. Pathol. 48, 187–192.CrossRefGoogle Scholar
  16. 16.
    Smits, P. H. and Vlak, J. M. (1988) Biological activity of Spodoptera exigua nuclear polyhedrosis virus against S. exigua larvae. J. Invertebr. Pathol. 51, 107–114.CrossRefGoogle Scholar
  17. 17.
    van Beek, N. A. M. and Hughes, P. R. (1986) Determination by fluorescence spectroscopy of the volume ingested by neonate lepidopterous larvae. J. Invertebr. Pathol. 48, 249–251.CrossRefGoogle Scholar
  18. 18.
    Washburn, J. O., Kirkpatrick, B. A., and Volkman, L. E. (1995) Comparative pathogenesis of Autographa californica M nuclear polyhedrosis virus in larvae of Trichoplusia ni and Heliothis virescens. Virology 209, 561–568.PubMedCrossRefGoogle Scholar
  19. 19.
    Hoover, K., Schultz, C. M., Lane, S. S., et al. (1995) Reduction in damage to cotton plants by a recombinant baculovirus that knocks moribund larvae of Heliothis virescens off the plant. Biol. Control. 5, 419–426.CrossRefGoogle Scholar
  20. 20.
    Robertson, J. L. and Preisler, H. K. (1992) Pesticide Bioassays With Arthropods. CRC Press, Baton Rouge, LA.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Huarong Li
    • 1
  • Bryony C. Bonning
    • 1
  1. 1.Department of EntomologyIowa State UniversityAmes

Personalised recommendations