Introduction

Distinctions Between Pichia pastoris and Other Expression Systems
  • James M. Cregg
Part of the Methods in Molecular Biology book series (MIMB, volume 389)

Abstract

The construction of Pichia pastoris expression strains and the general growth and manipulation of this yeast expression system are in many ways similar to those of bacterial expression systems, particularly Escherichia coli. Because of this, it is typically easy for researches experienced with bacterial systems to make the jump to this eukaryotic system. However, because the system is similar, users can be falsely fooled into assuming that the system is completely bacterial-like and may waste time and effort performing experiments that are unlikely to yield the desired results with this yeast. To aid in preventing P. pastoris users from falling into one or more or these traps, this introduction focuses directly on key ways that the P. pastoris expression system is different.

Key Words

Pichia pastoris foreign protein expression eukaryotic proteins 

References

  1. 1.
    Keck Graduate Institute, Faculty and Research, James M. Cregg, Resources. http://faculty.kgi.edu/cregg/index.htm. Last accessed on May 8, 2007.
  2. 2.
    Couderc, R. and Barratti, J. (1980) Oxidation of methanol by the yeast Pichia pastoris: purification and properties of alcohol oxidase. Agric. Biol. Chem. 44, 2279–2289.Google Scholar
  3. 3.
    Tschopp, J. F., Brust, P. F., Cregg, J. M., Stillman, C. and Gingeras, T. R. (1987) Expression of the lacZ Gene from Two Methanol Regulated Promoters in Pichia pastoris. Nuc. Acids Res. 15, 3859–3876.CrossRefGoogle Scholar
  4. 4.
    Subramani, S., Koller, A., and Snyder, W. B. (2000) Import of peroxisomal matrix and membrane proteins. Annu. Rev. Biochem. 69, 399–418.CrossRefPubMedGoogle Scholar
  5. 5.
    Farre, J. C. and Subramani, S. (2004) Peroxisome turnover by micropexophagy. Trends Cell Biol. 14, 515–523.CrossRefPubMedGoogle Scholar
  6. 6.
    Soderholm, J., Bhattacharyya, D., Strongin, D., et al. (2004) The transitional ER localization mechanism of Pichia pastoris Sec12. Dev. Cell 6, 649–659.CrossRefPubMedGoogle Scholar
  7. 7.
    Romanos, M. A., Scorer, C. A., and Clare, J. J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423–488.CrossRefPubMedGoogle Scholar
  8. 8.
    Higgins, D. R. and Cregg, J. M. (eds.) (1998) Methods in Molecular Biology: Pichia Protocols, vol. 103, Humana Press, Totowa, NJ.Google Scholar
  9. 9.
    Cregg, J. M., Vedvick, T. S., and Raschke, W. C. (1993) Recent Advances in the Expression of Foreign Genes in Pichia pastoris. Bio/Technology 11, 905–910.CrossRefPubMedGoogle Scholar
  10. 10.
    Romanos, M. (1995) Advances in the use of Pichia pastoris for high-level expression. Curr. Opin. Biotech. 6, 527–533.CrossRefGoogle Scholar
  11. 11.
    Nico-Farber, K., Harder, W., AB, G., and Veenhuis, M. (1995) Review: Methylotrophic yeasts as factories for the production of foreign proteins. Yeast 11, 1331–1344.CrossRefGoogle Scholar
  12. 12.
    Cregg, J. M. (1999) Expression in the methylotrophic yeast Pichia pastoris, in Gene Expression Systems: Using Nature for the Art of Expression (Fernandez, J. and Hoeffler, J., eds.), Academic Press, San Diego, CA, pp. 157–191.Google Scholar
  13. 13.
    Lin Cereghino, G. P. and Cregg, J. M. (1999) Applications of yeast in biotechnology: protein production and genetic analysis. Curr. Opin. Biotechnol. 10, 422–427.CrossRefGoogle Scholar
  14. 14.
    Lin Cereghino, J. and Cregg, J. M. (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24, 45–66.CrossRefGoogle Scholar
  15. 15.
    Cregg, J. M., Lin Cereghino, J., Shi, J., and Higgins, D. R. (2000) Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 16, 23–52.CrossRefPubMedGoogle Scholar
  16. 16.
    Lin Cereghino, G. P., Sunga, A. J., Lin Cereghino, J., and Cregg, J. M. (2001) Expression of foreign genes in the yeast Pichia pastoris, in Genetic Engineering: Principles and Methods, vol. 23. (Setlow, J., ed.), Kluwer Academic/Plenum Publishers, New York, NY, pp. 157–169.Google Scholar
  17. 17.
    Lin Cereghino, G. P., Lin Cereghino, J., Ilgen, C., and Cregg, J. M. (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr. Op. Biotech. 13, 329–332.CrossRefGoogle Scholar
  18. 18.
    Ilgen, C., Cereghino, J. L., and Cregg, J. M. (2004) Chapter 7: Pichia pastoris, in Production of Recombinant Proteins: Microbial and Eukaryotic Expression Systems (Gellissen, G., ed.), Wiley-VCH Verlag, Weinheim, Germany, pp. 143–162.Google Scholar
  19. 19.
    Gurkan, C., and Ellar, D. J. (2003) Expression of the Bacillus thuringiensis Cyt2Aa1 toxin in Pichia pastoris using a synthetic gene construct. Biotechnol. Appl. Biochem. 38, 25–33.CrossRefPubMedGoogle Scholar
  20. 20.
    Sinclair, G. and Choy, F. Y. (2002) Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast, Pichia pastoris. Protein Expr. Purif. 26, 96–105.CrossRefPubMedGoogle Scholar
  21. 21.
    Su, D. and Wilson, J. E. (2002) Purification of the Type II and Type III isozymes of rat hexokinase, expressed in yeast. Protein Expr. Purif. 24, 83–89.CrossRefPubMedGoogle Scholar
  22. 22.
    http://www.invitrogen.com. Last accessed May 8, 2007.
  23. 23.
    Vedvick, T., Buckholz, R. G., Engel, M., Urcan, M., Kinney, J., Provow, S., Siegel, R. S., and Thill, G. P. (1991) High-level secretion of biologically active aprotinin from the yeast Pichia pastoris. J. Ind. Microbiol. 7, 197–202.CrossRefPubMedGoogle Scholar
  24. 24.
    Raemarkers, R. J., de Muro, L., Gatehouse, J. A., Fordham-Skelton, A. P. (1999) Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris: correct N-terminal processing and secretion of heterologous proteins expressed using the PHA-E signal peptide. Eur. J. Biochem. 265, 394–403.CrossRefGoogle Scholar
  25. 25.
    White, C. E., Hunter, M. J., Meininger, D. P., White, L. R., and Komives, E. A. (1996) Large scale expression, purification and characterization of the smallest active fragment of thrombomodulin: the roles of the sixth domain and of methionine-388. Protein Eng. 8, 1177–1187.CrossRefGoogle Scholar
  26. 26.
    Cregg, J. M., Barringer, K. L., Hessler, A. Y., and Madden, K. R. (1985) Pichia pastoris as a host system for transformations. Mol. Cell Biol. 5, 3376–3385.PubMedGoogle Scholar
  27. 27.
    Scorer, C. A., Clare, J. J., McCombie, W. R., Romanos, M. A., and Sreekrishna, K. (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Bio/Technology 12, 181–184.CrossRefPubMedGoogle Scholar
  28. 28.
    Thill, G. P., Davis, G. R., Stillman, C., et al. (1991) Positive and negative effects of multi-copy integrated expression vectors on protein expression in Pichia pastoris, in Proceedings of the 6 th International Symposium on Genetics of Microorganisms, vol. II (Heslot, H., Davies, J., Florent, J., Bobichon, L., Durand, G., and Penasse, L., eds.) Societe Francaise de Microbiologie, Paris, pp. 477–490.Google Scholar
  29. 29.
    Brierley, R. A. (1998) Secretion of recombinant human insulin-like growth factor (IGF-1), in Methods in Molecular Biology: Pichia Protocols, vol. 103, (Higgins, D. R., and Cregg, J. M., eds.), Humana Press, Totowa, NJ, pp. 149–177.CrossRefGoogle Scholar
  30. 30.
    Higgins, D. R., Busser, K., Comiskey, J., Whittier, P. S., Purcell, T. J., and Hoeffler, J. P. (1998) Small vectors for expression based on dominant drug resistance with direct multicopy selection, in Methods in Molecular Biology: Pichia Protocols, vol. 103, (Higgins, D. R., and Cregg, J. M., eds.), Humana Press, Totowa, NJ, pp. 41–53.CrossRefGoogle Scholar
  31. 31.
    Sunga, A. J. and Cregg, J. M. (2004) The Pichia pastoris formaldehyde dehydrogenase gene (FLD1) as a marker for selection of multicopy expression strains of P. pastoris. Gene 330, 39–47.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • James M. Cregg
    • 1
  1. 1.Keck Graduate Institute of Applied Life SciencesClaremont

Personalised recommendations