Monitoring B Cell Response to Immunoselected Phage-Displayed Peptides by Microarrays

Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 524)

Summary

Successful adaptation of microarray technology for high-throughput screening of proteins requires a large number of purified recombinant proteins, e.g., antibodies for use as capture molecules. Phage surface display technology has been used for the surface expression of proteins, peptides or cDNA repertoires expressed by tumor cells. It does not require protein purification, as recombinant phages can be spotted on glass slides and used in a high-throughput screening format. Biopanning of phage libraries on patient serum antibodies is expected to enrich for antibody-binding phages for the fabrication of diagnostic and/or prognostic B-cell epitope microarrays. In contrast to other immunological techniques, microarrays can measure the antibody levels against different epitopes in a single test. This chapter highlights the recent advances in phage-based microarray technology to profile humoral immune responses in cancer patients.

Key words:

B-cell epitopes Peptide-phage libraries Microarray Cancer Autoimmunity Antibody signatures 

References

  1. 1.
    Miller, J. C., Zhou, H., Kwekel, J., Cavallo, R., Burke, J., Butler, E. B., Teh, B. S., and Haab, B. B. (2003) Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3, 56–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Belov, L., de la Vega, O., dos Remedios, C. G., Mulligan, S. P., and Christopherson, R. I. (2001) Immunophenotyping of leukemias using a cluster of differentiation antibody microarray. Cancer Res. 61, 4483–4489.PubMedGoogle Scholar
  3. 3.
    Usui-Aoki, K., Shimada, K., Nagano, M., Kawai, M., and Koga, H. (2005) A novel approach to protein expression profiling using antibody microarrays combined with surface plasmon resonance technology. Proteomics 5, 2396–2401.PubMedCrossRefGoogle Scholar
  4. 4.
    Wingren, C., Steinhauer, C., Ingvarsson, J., Persson, E., Larsson, K., and Borrebaeck, C. A. (2005) Microarrays based on affinity-tagged single-chain Fv antibodies: sensitive detection of analyte in complex proteomes. Proteomics 5, 1281–1291.PubMedCrossRefGoogle Scholar
  5. 5.
    Ghobrial, I. M., McCormick, D. J., Kaufmann, S. H., Leontovich, A. A., Loegering, D. A., Dai, N. T., Krajnik, K. L., Stenson, M. J., Melhem, M. F., Novak, A. J., Ansell, S. M, and Witzig, T. E (2005) Proteomic analysis of mantle-cell lymphoma by protein microarray. Blood 105, 3722–3730.PubMedCrossRefGoogle Scholar
  6. 6.
    Hesselberth, J. R., Miller, J. P., Golob, A., Stajich, J. E., Michaud, G. A., and Fields, S. (2006) Comparative analysis of Saccharomyces cerevisiae WW domains and their interacting proteins. Genome Biol. 7, R30.PubMedCrossRefGoogle Scholar
  7. 7.
    Rung, J., Schlitt, T., Brazma, A., Freivalds, K., and Vilo, J. (2002) Building and analysing genome-wide gene disruption networks. Bioinformatics 18 Suppl 2, S202–S210.PubMedCrossRefGoogle Scholar
  8. 8.
    Spaller, M. R. (2006) Act globally, think locally: systems biology addresses the PDZ domain. ACS Chem. Biol. 1, 207–210.PubMedCrossRefGoogle Scholar
  9. 9.
    Li, Y., Lee, H. J., and Corn, R. M. (2006) Fabrication and characterization of RNA aptamer microarrays for the study of protein-aptamer interactions with SPR imaging. Nucleic Acids Res. 34, 6416–6424.PubMedCrossRefGoogle Scholar
  10. 10.
    Jones, R. B., Gordus, A., Krall, J. A., and MacBeath, G. (2006) A quantitative protein interaction network for the ErbB receptorsusing protein microarrays. Nature 439, 168–174.PubMedCrossRefGoogle Scholar
  11. 11.
    Snoek, R., Rennie, P. S., Kasper, S., Matusik, R. J., and Bruchovsky, N. (1996) Induction of cell-free, in vitro transcription by recombinant androgen receptor peptides. J. Steroid Biochem. 59, 243–250.CrossRefGoogle Scholar
  12. 12.
    Angenendt, P., Kreutzberger, J., Glokler, J., and Hoheisel, J. D. (2006) Generation of high density protein microarrays by cell-free in Situ expression of unpurified PCR products. Mol. Cell. Proteomics 5, 1658–1666.PubMedCrossRefGoogle Scholar
  13. 13.
    Perrin, A., Duracher, D., Perret, M., Cleuziat, P., and Mandrand, B. (2003) A combined oligonucleotide and protein microarray for the codetection of nucleic acids and antibodies associated with human immunodeficiency virus, hepatitis B virus, and hepatitis C virus infections. Anal. Biochem. 322, 148–155.PubMedCrossRefGoogle Scholar
  14. 14.
    Dybwad, A., Forre, O., Kjeldsen-Kragh, J., Natvig, J. B., and Sioud, M. (1993) Identification of new B-cell epitopes in the sera of rheumatoid arthritis patients using a random nanopeptide-phage library. Eur. J. Immunol. 23, 3189–3193.PubMedCrossRefGoogle Scholar
  15. 15.
    Hansen, M. H., Ostenstad, B., and Sioud, M. (2001) Antigen-specific IgG antibodies in stage IV long-time survival breast cancer patients. Mol. Med. 7, 230–239.PubMedGoogle Scholar
  16. 16.
    Sioud, M., and Hansen, M. H. (2001) Profiling the immune response in patients with breast cancer by phage-displayed cDNA libraries. Eur. J. Immunol. 31, 716–725.PubMedCrossRefGoogle Scholar
  17. 17.
    Cekaite, L., Haug, O., Myklebost, O., Aldrin, M., Ostenstad, B., Holden, M., Frigessi, A., Hovig, E., and Sioud, M. (2004) Analysis of the humoral immune response to immunoselected phage-displayed peptides by a microarray-based method. Proteomics 4, 2572–2582.PubMedCrossRefGoogle Scholar
  18. 18.
    Bradford, T. J., Wang, X., and Chinnaiyan, A. M. (2006) Cancer immunomics: using autoantibody signatures in the early detection of prostate cancer. Urol. Oncol. 24, 237–242.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhong, L., Hidalgo, G. E., Stromberg, A. J., Khattar, N. H., Jett, J. R., and Hirschowitz, E. A. (2005) Using protein microarray as a diagnostic assay for non–small-cell lung cancer. Am. J. Respir. Crit. Care 172, 1308–1314.CrossRefGoogle Scholar
  20. 20.
    Chen, G., Wang, X., Yu, J., Varambally, S., Yu, J., Thomas, D. G., Lin, M. Y., Vishnu, P., Wang, Z., Wang, R., Fielhauer, J., Ghosh, D., Giordano, T. J., Giacherio, D., Chang, A. C., Orringer, M. B., El-Hefnawy, T., Bigbee, W. L., Beer, D. G., and Chinnaiyan, A. M. (2007) Autoantibody profiles reveal ubiquilin 1 as a humoral immune response target in lung adenocarcinoma. Cancer Res. 67, 3461–3467.PubMedCrossRefGoogle Scholar
  21. 21.
    Bradford, T. J., Wang, X., and Chinnaiyan, A. M. (2006) Cancer immunomics: using autoantibody signatures in the early detection of prostate cancer. Urol. Oncol. Sem. Origin. Invest. 24, 237–242.CrossRefGoogle Scholar
  22. 22.
    Wang, X., Yu, J., Sreekumar, A., Varambally, S., Shen, R., Giacherio, D., Mehra, R., Montie, J. E., Pienta, K. J., Sanda, M. G., Kantoff, P. W., Rubin, M. A., Wei, J. T., Ghosh, D., and Chinnaiyan, A. M. (2005) Autoantibody signatures in prostate cancer. N. Engl. J. Med. 353, 1224–1235.PubMedCrossRefGoogle Scholar
  23. 23.
    Nowak, J. E., Chatterjee, M., Mohapatra, S., Dryden, S. C., and Tainsky, M. A. (2006) Direct production and purification of T7 phage display cloned proteins selected and analyzed on microarrays. Biotechniques 40, 220–227.PubMedCrossRefGoogle Scholar
  24. 24.
    Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.PubMedCrossRefGoogle Scholar
  25. 25.
    Sioud, M., Forre, O., and Dybwad, A. (1996) Selection of ligands for polyclonal antibodies from random peptide libraries: potential identification of (auto)antigens that may trigger B and T cell responses in autoimmune diseases. Clin. Immunol. Immunopathol. 79, 105–114.PubMedCrossRefGoogle Scholar
  26. 26.
    Sioud, M., Hansen, M., and Dybwad, A. (2000) Profiling the immune responses in patient sera with peptide and cDNA display libraries. Int. J. Mol. Med. 6, 123–128.PubMedGoogle Scholar
  27. 27.
    Jespers, L. S., Messens, J. H., De Keyser, A., Eeckhout, D., Van den Brande, I., Gansemans, Y. G., Lauwereys, M. J., Vlasuk, G. P., and Stanssens, P. E. (1995) Surface expression and ligand-based selection of cDNAs fused to filamentous phage gene VI. Biotechnology (N Y) 13, 378–382.CrossRefGoogle Scholar
  28. 28.
    Chatterjee, M., Mohapatra, S., Ionan, A., Bawa, G., Ali-Fehmi, R., Wang, X., Nowak, J., Ye, B., Nahhas, F. A., Lu, K., Witkin, S. S., Fishman, D., Munkarah, A., Morris, R., Levin, N. K., Shirley, N. N., Tromp, G., Abrams, J., Draghici, S., and Tainsky, M. A. (2006) Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays. Cancer Res. 66, 1181–1190.PubMedCrossRefGoogle Scholar
  29. 29.
    Eilers, P. H., Boer, J. M., Van Ommen, G. J. B., and Van Houwelingen, H. C. (2001) Classification of microarray data with penalized logistic regression. Proc. Soc. Photo Opt. Instrum. Eng. 4266, 187–198.Google Scholar
  30. 30.
    Zweig, M. H. and Campbell, G. (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561–577.PubMedGoogle Scholar
  31. 31.
    Hu, S., Loo, J. A., and Wong, D. T. (2006) Human body fluid proteome analysis. Proteomics 6, 6326–6353.PubMedCrossRefGoogle Scholar
  32. 32.
    Thadikkaran, L., Siegenthaler, M. A., Crettaz, D. Queloz, P. A., Schneider, P., and Tissot, J. D. (2005) Recent advances in blood-related proteomics. Proteomics 5, 3019–3034.PubMedCrossRefGoogle Scholar
  33. 33.
    Anderson, L. (2005) Candidate-based proteo-mics in the search for biomarkers of cardiovascular disease. J. Physiol. 563, 23–60.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departments of Immunology and Tumor BiologyInstitute for Cancer Research, The Norwegian Radium Hospital, Rikshopitalet University Hospital MontebelloNorway

Personalised recommendations