Gene Expression Analysis in Diabetes Research

Part of the Methods in Molecular Biology book series (MIMB, volume 560)


Global gene expression profiling through the use of microarray technology is among the most powerful molecular biological techniques available to diabetes researchers today. In this chapter, we outline how to appropriately perform a microarray experiment using pancreatic islets or total pancreas, based upon over a decade of experience in our laboratory. Through the utilization of careful experimental designs, large numbers of biological replicates, production of high-quality starting material, optimized protocols for hybridization, and sophisticated tools for data processing and statistical analysis, the full potential of high-quality expression profiling can be realized.

Key words

Microarray RNA extraction Gene expression profiling Diabetes Islet, β-Cell 


  1. 1.
    Edlund H. (2002). Pancreatic organogenesis - developmental mechanisms and implications for therapy. Nat. Rev. Genet. 3, 524–532PubMedCrossRefGoogle Scholar
  2. 2.
    Habener J. F., Kemp D. M., and Thomas M. K. (2005). Minireview: transcriptional regulation in pancreatic development. Endocrinology 146, 1025–1034PubMedCrossRefGoogle Scholar
  3. 3.
    Lantz K. A. and Kaestner K. H. (2005). Winged-helix transcription factors and pancreatic development. Clin. Sci. 108, 195–204PubMedCrossRefGoogle Scholar
  4. 4.
    Wilson M. E., Scheel D., and German M. S. (2003). Gene expression cascades in pancreatic development. Mech. Dev. 120, 65–80PubMedCrossRefGoogle Scholar
  5. 5.
    Jensen J. (2004). Gene regulatory factors in pancreatic development. Dev. Dyn. 229, 176–200PubMedCrossRefGoogle Scholar
  6. 6.
    Shi L. and Consortium T. M. (2006). The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat. Biotechnol. 24, 1151–1161PubMedCrossRefGoogle Scholar
  7. 7.
    Gao N., White P., Doliba N., Golson M. L., Matschinsky F. M., and Kaestner K. H. (2007). Foxa2 controls vesicle docking and insulin secretion in mature beta cells. Cell Metab. 6, 267–279PubMedCrossRefGoogle Scholar
  8. 8.
    Gupta R. K., Gao N., Gorski R. K., White P., Hardy O. T., Rafiq K., Brestelli J. E., Chen G., Stoeckert C. J., Jr., and Kaestner K. H. (2007). Expansion of adult beta-cell mass in response to increased metabolic demand is dependent on HNF-4alpha. Genes Dev. 21, 756–769PubMedCrossRefGoogle Scholar
  9. 9.
    Hardy O. T., Hohmeier H. E., Becker T. C., Manduchi E., Doliba N. M., Gupta R. K., White P., Stoeckert C. J., Jr., Matschinsky F. M., Newgard C. B., and Kaestner K. H. (2007). Functional genomics of the beta-cell: short-chain 3-hydroxyacyl-coenzyme A dehydrogenase regulates insulin secretion independent of K+ currents. Mol. Endocrinol. 21, 765–773PubMedCrossRefGoogle Scholar
  10. 10.
    Mazzarelli J. M., White P., Gorski R., Brestelli J., Pinney D. F., Arsenlis A., Katokhin A., Belova O., Bogdanova V., Elisafenko E., Gubina M., Nizolenko L., Perelman P., Puzakov M., Shilov A., Trifonoff V., Vorobjeva N., Kolchanov N., Kaestner K. H., and Stoeckert C. J., Jr. (2006). Novel genes identified by manual annotation and microarray expression analysis in the pancreas. Genomics 88, 752–761PubMedCrossRefGoogle Scholar
  11. 11.
    White P., Brestelli J. E., Kaestner K. H., and Greenbaum L. E. (2005). Identification of transcriptional networks during liver regeneration. J. Biol. Chem. 280, 3715–3722PubMedCrossRefGoogle Scholar
  12. 12.
    Vatamaniuk M. Z., Gupta R. K., Lantz K. A., Doliba N. M., Matschinsky F. M., and Kaestner K. H. (2006). Foxa1-deficient mice exhibit impaired insulin secretion due to uncoupled oxidative phosphorylation. Diabetes 55, 2730–2736PubMedCrossRefGoogle Scholar
  13. 13.
    Manduchi E., Scearce L. M., Brestelli J. E., Grant G. R., Kaestner K. H., and Stoeckert C. J., Jr. (2002). Comparison of different labeling methods for two-channel high-density microarray experiments. Physiol. Genomics 10, 169–179PubMedGoogle Scholar
  14. 14.
    Scearce L. M., Brestelli J. E., McWeeney S. K., Lee C. S., Mazzarelli J., Pinney D. F., Pizarro A., Stoeckert C. J., Jr., Clifton S. W., Permutt M. A., Brown J., Melton D. A., and Kaestner K. H. (2002). Functional genomics of the endocrine pancreas: the pancreas clone set and PancChip, new resources for diabetes research. Diabetes 51, 1997–2004PubMedCrossRefGoogle Scholar
  15. 15.
    Allison D. B., Cui X., Page G. P., and Sabripour M. (2006). Microarray data analysis: from disarray to consolidation and consensus. Nat. Rev. Genet. 7, 55–65PubMedCrossRefGoogle Scholar
  16. 16.
    Grant G. R., Manduchi E., and Stoeckert C. J., Jr. (2007). Analysis and management of microarray gene expression data. In: Current Protocols in Molecular Biology (Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K., Eds.), John Wiley & Sons, Inc., Hoboken, NJ, pp. 19.16.11-19.16.30Google Scholar
  17. 17.
    Yang Y. H., Buckley M. J., and Speed T. P. (2001). Analysis of cDNA microarray images. Brief Bioinform 2, 341–349PubMedCrossRefGoogle Scholar
  18. 18.
    Smyth G. K., Michaud J., and Scott H. S. (2005). Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21, 2067–2075PubMedCrossRefGoogle Scholar
  19. 19.
    Smyth G. K. and Speed T. (2003). Normalization of cDNA microarray data. Methods 31, 265–273PubMedCrossRefGoogle Scholar
  20. 20.
    Tusher V. G., Tibshirani R., and Chu G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U.S.A. 98, 5116–5121PubMedCrossRefGoogle Scholar
  21. 21.
    Leek J. T., Monsen E., Dabney A. R., and Storey J. D. (2006). EDGE: extraction and analysis of differential gene expression. Bioinformatics 22, 507–508PubMedCrossRefGoogle Scholar
  22. 22.
    Grant G. R., Liu J., and Stoeckert C. J., Jr. (2005). A practical false discovery rate approach to identifying patterns of differential expression in microarray data. Bioinformatics 21, 2684–2690PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Genetics and Institute for Diabetes, Obesity and MetabolismUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations