Purification and Mass-Spectrometry Identification of Microtubule-Binding Proteins from Xenopus Egg Extracts

  • Vincent Gache
  • Patrice Waridel
  • Sylvie Luche
  • Andrej Shevchenko
  • Andrei V. Popov
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 137)

Abstract

Microtubule-binding proteins are conveniently divided into two large groups: MAPs (microtubule-associated proteins), which can stabilize, anchor, and/or nucleate microtubules, and motors, which use the energy of ATP hydrolysis for a variety of functions, including microtubule network organization and cargo transportation along microtubules. Here, we describe the use of Taxol-stabilized microtubules for purification of MAPs, motors, and their complexes from Xenopus egg extracts. Isolated proteins are analysed using sodium dodecyl sulfate gel electrophoresis and identified by various mass spectrometry and database mining technologies. Found proteins can be grouped into three classes: (1) known MAPs and motors; (2) proteins previously reported as associated with the microtubule cytoskeleton, but without a clearly defined cytoskeletal function; (3) proteins not yet described as having microtubule localization. Sequence-similarity methods employed for protein identification allow efficient identification of MAPs and motors from species with yet unsequenced genomes.

Key Words

Tubulin microtubule microtubule-associated protein MAP motor Xenopus egg extracts mass spectrometry proteomics 

References

  1. 1.
    Borisy, G. G. and Taylor, E. W. (1967) The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus. J. Cell Biol. 34, 535–548.CrossRefPubMedGoogle Scholar
  2. 2.
    Borisy, G. G. and Taylor, E. W. (1967) The mechanism of action of colchicine. Binding of colchincine-3H to cellular protein. J. Cell Biol. 34, 525–533.CrossRefPubMedGoogle Scholar
  3. 3.
    Sloboda, R. D., Rudolph, S. A., Rosenbaum, J. L., and Greengard, P. (1975) Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc. Natl. Acad. Sci. USA 72, 177–181.CrossRefPubMedGoogle Scholar
  4. 4.
    Weingarten, M. D., Lockwood, A. H., Hwo, S. Y., and Kirschner, M. W. (1975) A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA 72, 1858–1862.CrossRefPubMedGoogle Scholar
  5. 5.
    Hirokawa, N., Noda, Y., and Okada, Y. (1998) Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol. 10, 60–73.CrossRefPubMedGoogle Scholar
  6. 6.
    Morejohn, L. C. (1994) Microtubule binding proteins are not necessarily microtubule-associated proteins. Plant Cell 6, 1696–1699.CrossRefPubMedGoogle Scholar
  7. 7.
    Dustin, P. (1980) Microtubules. Sci. Am. 243, 66–76.CrossRefPubMedGoogle Scholar
  8. 8.
    Hirokawa, N. (1994) Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr. Opin. Cell Biol. 6, 74–81.CrossRefPubMedGoogle Scholar
  9. 9.
    Cassimeris, L. and Spittle, C. (2001) Regulation of microtubule-associated proteins. Int. Rev. Cytol. 210, 163–226.CrossRefPubMedGoogle Scholar
  10. 10.
    Ookata, K., Hisanaga, S., Bulinski, J. C., et al. (1995) Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics. J. Cell Biol. 128, 849–862.CrossRefPubMedGoogle Scholar
  11. 11.
    Lohka, M. J. and Masui, Y. (1983) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220, 719–721.CrossRefPubMedGoogle Scholar
  12. 12.
    Murray, A. W. and Kirschner, M. W. (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–280.CrossRefPubMedGoogle Scholar
  13. 13.
    Andersen, S. S. (1998) Xenopus interphase and mitotic microtubule-associated proteins differentially suppress microtubule dynamics in vitro. Cell Motil. Cytoskeleton. 41, 202–213.CrossRefPubMedGoogle Scholar
  14. 14.
    Andersen, S. S. L. (1999) Balanced regulation of microtubule dynamics during the cell cycle: a contemporary view. BioEssays 21, 53–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Nachury, M. V., Maresca, T. J., Salmon, W. C., Waterman-Storer, C. M., Heald, R., and Weis, K. (2001) Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104, 95–106.CrossRefPubMedGoogle Scholar
  16. 16.
    Desai, A., Murray, A., Mitchison, T. J., and Walczak, C. E. (1999) The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol. 61, 385–412.CrossRefPubMedGoogle Scholar
  17. 17.
    Murray, A. W. (1991) Cell cycle extracts. Methods Cell Biol. 36, 581–605.CrossRefPubMedGoogle Scholar
  18. 18.
    Hyman, A., Drechsel, D., Kellogg, D., et al. (1991) Preparation of modified tubulins. Methods Enzymol. 196, 478–85.CrossRefPubMedGoogle Scholar
  19. 19.
    Castoldi, M. and Popov, A. V. (2003) Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83–88.CrossRefPubMedGoogle Scholar
  20. 20.
    Brinkley, B. R. (1985) Microtubule organizing centers. Annu. Rev. Cell Biol. 1, 145–172.CrossRefPubMedGoogle Scholar
  21. 21.
    Ausubel, F. M., Brent, R., Kingston, R. E., et al. (2005) Current Protocols in Molecular Biology. John Wiley & Sons, Hoboken, NJ.Google Scholar
  22. 22.
    Gianazza, E., Celentano, F., Magenes, S., Ettori, C., and Righetti, P. G. (1989) Formulations for immobilized pH gradients including pH extremes. Electrophoresis 10, 806–808.CrossRefPubMedGoogle Scholar
  23. 23.
    Rabilloud, T., Valette, C., and Lawrence, J. J. (1994) Sample application by ingel rehydration improves the resolution of two-dimensional electrophoresis with immobilized pH gradients in the first dimension. Electrophoresis 15, 1552–1558.CrossRefPubMedGoogle Scholar
  24. 24.
    Rabilloud, T., Adessi, C., Giraudel, A., and Lunardi, J. (1997) Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18, 307–316.CrossRefPubMedGoogle Scholar
  25. 25.
    Tastet, C., Lescuyer, P., Diemer, H., Luche, S., van Dorsselaer, A., and Rabilloud, T. (2003) A versatile electrophoresis system for the analysis of high-and low-molecular-weight proteins. Electrophoresis 24, 1787–1794.CrossRefPubMedGoogle Scholar
  26. 26.
    Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255–262.CrossRefPubMedGoogle Scholar
  27. 27.
    Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858.CrossRefPubMedGoogle Scholar
  28. 28.
    Shevchenko, A., Sunyaev, S., Liska, A., Bork, P., and Shevchenko, A. (2003) Nanoelectrospray tandem mass spectrometry and sequence similarity searching for identification of proteins from organisms with unknown genomes. Methods Mol. Biol. 211, 221–234.PubMedGoogle Scholar
  29. 29.
    Frank, A. and Pevzner, P. (2005) PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal. Chem. 77, 964–973.CrossRefPubMedGoogle Scholar
  30. 30.
    Shevchenko, A., Sunyaev, S., Loboda, A., et al. (2001) Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal. Chem. 73, 1917–1926.CrossRefPubMedGoogle Scholar
  31. 31.
    Habermann, B., Oegema, J., Sunyaev, S., and Shevchenko, A. (2004) The power and the limitations of cross-species protein identification by mass spectrometry-driven sequence similarity searches. Mol. Cell. Proteomics. 3, 238–249.CrossRefPubMedGoogle Scholar
  32. 32.
    Liska, A. J., Popov, A. V., Sunyaev, S., et al. (2004) Homology-based functional proteomics by mass spectrometry: application to the Xenopus microtubule-associated proteome. Proteomics 4, 2707–2721.CrossRefPubMedGoogle Scholar
  33. 33.
    Spudich, J. A. and Lin, S. (1972) Cytochalasin B, its interaction with actin and actomyosin from muscle (cell movement-microfilaments-rabbit striated muscle). Proc. Natl. Acad. Sci. USA 69, 442–446.CrossRefPubMedGoogle Scholar
  34. 34.
    Schiff, P. B., Fant, J., and Horwitz, S. B. (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277, 665–667.CrossRefPubMedGoogle Scholar
  35. 35.
    Brady, S. T. and Lasek, R. J. (1984) Adenylyl imidodiphosphate (AMPPNP), a nonhydrolyzable analogue of ATP, produces a stable intermediate in the motility cycle of fast axonal transport. Biol. Bull. 167, 503Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Vincent Gache
    • 1
  • Patrice Waridel
    • 2
  • Sylvie Luche
    • 3
  • Andrej Shevchenko
    • 2
  • Andrei V. Popov
    • 1
  1. 1.INSERM, Unitt 366, DRDC/CSCEA-GrenobleGrenobleFrance
  2. 2.Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
  3. 3.DRDC/CSCEA-GrenobleGrenobleFrance

Personalised recommendations