Implementation of Pharmacogenomic Sample Collection in Clinical Trials

  • Deborah Sokol Ricci
  • Monique Franc
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


This chapter is intended to provide an overview of the operational considerations and potential obstacles that can be anticipated during the implementation of pharmacogenomic research in clinical trials. Particular attention is given to the elements of the protocol and of the informed consent and the considerations for collection of different sample types on a global level. The goal is to provide the reader with an appreciation for the study design elements on an operational level rather than on a scientific or statistical study design level. Educational efforts by various working groups to harmonize global standards are also outlined and will provide the reader with an overview of the ongoing efforts to promote global genomic research in the present day.


biomarker genomics pharmacogenomics global sample handling, genetics global regulations local regulations sample coding exploratory research 


  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Eriksson S, Helgesson G (2005) Potential harms, anonymization, and the right to withdraw consent to biobank research. Eur J Hum Genet 13(9):1071–6CrossRefPubMedGoogle Scholar
  6. 6.
    Rivera R, Borasky D, Rice R, Carayon F, Wong E (2007) Informed consent: an international researcher's perspective. Am J Public Health 97(1):25–30CrossRefPubMedGoogle Scholar
  7. 7.
    Miller CK, O'Donnell DC, Searight HR, Barbarash RA (1996) The Deaconess Informed Consent Comprehension Test: an assessment tool for clinical research subjects. Pharma-cotherapy 16(5):872–8Google Scholar
  8. 8.
    Daugherty C, Ratain MJ, Grochowski E, et al (1995) Perceptions of cancer patients and their physicians involved in phase I trials. J Clin Oncol 13(5):1062–72PubMedGoogle Scholar
  9. 9.
    Flesch R (1978) A new readability yardstick. J Appl Psychol 32:221–33CrossRefGoogle Scholar
  10. 10.
    Flesch R (1979) How to write plain English. Harper, New YorkGoogle Scholar
  11. 11.
    Baker MT, Taub HA (1983) Readability of informed consent forms for research in a Veterans Administration medical center. JAMA 250(19):2646–8CrossRefPubMedGoogle Scholar
  12. 12.
    Duffy T, Kabance P (1982) Testing a readability writing approach to text revision. J Educ Psychol 74:733–48CrossRefGoogle Scholar
  13. 13.
    Eaton ML, Holloway RL (1980) Patient comprehension of written drug information. Am J Hosp Pharm 37(2):240–3PubMedGoogle Scholar
  14. 14.
    Irwin J (1991) Teaching reading comprehension process, 2nd ed. Prentice Hall, New Jersey.Google Scholar
  15. 15.
    Vacca R, Vacca J (1989) Content area reading, 3rd ed. Scott Foresman, Illinois.Google Scholar
  16. 16.
    Kirsch I, Jungeblut A, Jenkins L, Kolstad A (1993) Adult literacy in America., U.S. Department of Education, WashingtonGoogle Scholar
  17. 17.
    Regulations USCoF (2007) United States Code of Federal Regulations. In: 21 CFR 50.25.Google Scholar
  18. 18.
    Sciences CfIOoM (2002) International ethical guidelines for biomedical research involving human subjects. Geneva, ISBN 92-9036-075-5Google Scholar
  19. 19.
    Anderson C, Gomez-Mancilla B, Spear B et al (2002) Elements of informed consent for phar-macogenetic research: perspective of the Pharmacogenetics Working Group.Pharmacogenomics J 2(5):284–92CrossRefPubMedGoogle Scholar
  20. 20.
    Wertz DC (2002) Genetic discrimination—an overblown fear? Nat Rev Genet 3(7):496PubMedGoogle Scholar
  21. 21.
    Shickle D (2006) The consent problem within DNA biobanks. Stud Hist Philos Biol Biomed Sci 37(3):503–19CrossRefPubMedGoogle Scholar
  22. 22.
    Hoeyer K, Olofsson BO, Mjorndal T, Lynoe N (2004) Informed consent and biobanks: a population-based study of attitudes towards tissue donation for genetic research. Scand J Public Health 32(3):224–9CrossRefPubMedGoogle Scholar
  23. 23.
    ICH Harmonized Tripartite Guideline E6(R1): Good Clinical Practice: Consolidated Guideline, 1996.Google Scholar
  24. 24.
    Renegar G, Webster C, Stuerzebecher S et al (2006) Returning genetic research results to individuals: points to consider. Bioethics 20(1):24–36CrossRefPubMedGoogle Scholar
  25. 25.
    Bhutta ZA (2004) Beyond informed consent. B World Health Organ 82(10):771–7Google Scholar
  26. 26.
    Madisen L, Hoar D, Holroyd C, Crisp M, Hodes M (1987) DNA banking: the effects of storage of blood and isolated DNA on the integrity of DNA. Am J Med Genet 27:379–90CrossRefPubMedGoogle Scholar
  27. 27.
    Gustincich S, Manfioletti G, Del Sal G, Schneider C, Carninci P (1991) A fast method for high-quality genomic DNA extraction from whole human blood. Biotechniques 11:298–300PubMedGoogle Scholar
  28. 28.
    McCullough J, Carter S, Quie P (1974) Effects of anticoagulants and storage on granulocyte function in bank blood. Blood 43:207–17PubMedGoogle Scholar
  29. 29.
    Cushwa W, Medrano J (1993) Effects of blood storage time and temperature on DNA yield and quality. Biotechniques 14:204–7PubMedGoogle Scholar
  30. 30.
    Polakova H, Kadasi L, Zelinkova M (1989) The yield and quality of DNA extracted from blood samples stored under various conditions. Bratisl Lek Listy 90:844–7PubMedGoogle Scholar
  31. 31.
    Bomjen G, Raina A, Sulaiman I, Hasnain S, Dogra T (1996) Effect of storage of blood samples on DNA yield, quality and fingerprinting: a forensic approach. Ind J Exp Biol 34:384–6Google Scholar
  32. 32.
    Ross K, Haites N, Kelly K (1990) Repeated freezing and thawing of peripheral blood and DNA in suspension: effects on DNA yield and integrity. J Med Genet 27:569–70CrossRefPubMedGoogle Scholar
  33. 33.
    Ellsworth D, Manolio T (1999) The emerging importance of genetics in epidemiologic research. I. Basic concepts in human genetics and laboratory technology. AEP 9(1):1–16PubMedGoogle Scholar
  34. 34.
    McIndoe R, Linhardt M, Hood L (1995) Single tube genomic DNA isolation from whole blood without pre-isolating white blood cells. BioTechniques 19(1):30–2PubMedGoogle Scholar
  35. 35.
    Fan H, Hedge P (2005) The transcriptome in blood: challenges and solutions for robust expression profiling. Curr Mol Med 5:3–10CrossRefPubMedGoogle Scholar
  36. 36.
    Rainen L, Oelmueller U, Jurgensen S et al (2002) Stabilization of mRNA expression in whole blood samples. Clin Chem 48:1883–90PubMedGoogle Scholar
  37. 37.
    Feezor R, Baker H, Mindrinos M et al (2004) Whole blood and leukocyte RNA isolation for gene expression analyses. Physiol Genomics 19:247–54CrossRefPubMedGoogle Scholar
  38. 38.
    Haskill S, Johnson C, Eierman D, Becker S, Warren K (1988) Adherence induces selective mRNA expression of monocyte mediators and proto-oncogenes. J Immunol 140:1690–4PubMedGoogle Scholar
  39. 39.
    Pahl A, Brune K (2002) Gene expression changes in blood after phlebotomy: implications for gene expression profiling. Blood 100:1094–5CrossRefPubMedGoogle Scholar
  40. 40.
    Tanner M, Berk L, Felten D, Blidy A, Bit S, Ruff D (2002) Substantial changes in gene expression level due to the storage temperature and storage duration of human whole blood. Clin Lab Haematol 24:337–41CrossRefPubMedGoogle Scholar
  41. 41.
    Davidson T, Johnson C, Andruss B (2006) Analyzing micro-RNA expression using microar-rays. Method Enzymol 411:1–14CrossRefGoogle Scholar
  42. 42.
    Madabushi L, Latham G, Andruss G (2006) RNA extraction for arrays. Method Enzymol 411:1–14.CrossRefGoogle Scholar
  43. 43.
    Emmert-Buck M, Bonner R, Smith P et al (1996) Laser capture microdissection. Science 274:998–1001.CrossRefPubMedGoogle Scholar
  44. 44.
    Perlmutter M, Best C, Gillespie J et al (2004) Comparison of snap freezing versus ethanol fixation for gene expression profiling of tissue specimens. J Mol Diagn 6(4):371–7CrossRefPubMedGoogle Scholar
  45. 45.
    Kim J, Hwang M, Shin H et al (2003) Differential expression analysis using paraffin-embedded tissues after laser microdissection. J Cell Biochem 90:998–1006CrossRefPubMedGoogle Scholar
  46. 46.
    Vincek V, Nassiri M, Nadji M, Morales A (2003) A tissue fixative that protects macromole-cules (DNA, RNA, and protein) and histomorphology in clinical samples. Lab Invest 90:1427–35.CrossRefGoogle Scholar
  47. 47.
    Mutter G, Zahrieh D, Liu C et al (2004) Comparison of frozen and RNALater solid tissue storage methods for use in RNA expression microarrays. BMC Genom 5:88CrossRefGoogle Scholar
  48. 48.
    Guder W, Narayanan S, Wisserh H, Zawta B (2003) Samples: from the patient to the laboratory: the impact of preanalytical variables on the quality of laboratory results, 3rd ed. Wiley, New York. p 106Google Scholar
  49. 49.
    Drake S, Bowen R, Remaley A, Hortin G (2004) Potential interferences from blood collection tubes in mass spectrometric analysis of serum polypetides. Clin Chem 50:2398–401CrossRefPubMedGoogle Scholar
  50. 50.
    Rai A, Gelfand C, Haywood B et al (2005) HUPO plasma proteome project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5:3262–77CrossRefPubMedGoogle Scholar
  51. 51.
    Villanueva J, Philip J, Entenberg D et al (2004) Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal Chem 76:1560–70.CrossRefPubMedGoogle Scholar
  52. 52.
    Petricoin E, Ardekani F, Hitt A, Levine B (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359:572–7CrossRefPubMedGoogle Scholar
  53. 53.
    Check E (2004) Proteomics and cancer: running before we can walk. Nature 429:496–7CrossRefPubMedGoogle Scholar
  54. 54.
    Diamandis E (2004) Mass spectrometry as a diagnostic and a cancer biomarker discovery tool. Proteomics 3:367–78Google Scholar
  55. 55.
    Rai A, Stemmer J, Zhang Z et al (2005) Analysis of human proteome organization plasma proteome project (HUPO PPP) reference specimens using surace enhanced laser desorption/ ionization-time of flight (SELDI-TOF) mass spectrometry: multi-institution correlation of spectra and identification of biomarkers. Proteomics 5:3467–74CrossRefPubMedGoogle Scholar
  56. 56.
    Haab B, Geierstanger B, Michailidis B et al (2005) Immunoassay and antibody microar-ray analysis of the HUPO plasma proteome project reference specimens: systematic variation between sample types and calibration of mass spectrometry data. Proteomics 5:3278–91.CrossRefPubMedGoogle Scholar
  57. 57.
    Tubes and Additives for venous blood specimen collection: approved standard-fifth edition, NCCLS. In. Wayne, PA; 2003:33Google Scholar
  58. 58.
    Spear B, Heath-Chiozzi M, Barnes D, Cheeseman K, Shaw P, Campbell D (2001) Terminology for sample collection in clinical genetic studies. Pharmacogenomics J 1:101–3CrossRefGoogle Scholar
  59. 59.
    Lesko L, Salerno R, Spear B et al (2003) Pharmacogenetics and pharmacogenomics in drug development and regulatory decision making: report of the first FDA-PWG-PhRMA-Drug Safe Workshop. J Clin Pharmacol 43(4):342–58CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Deborah Sokol Ricci
    • 1
  • Monique Franc
    • 2
  1. 1.Johnson and Johnson Pharmaceutical Research and Development,RaritanNJ
  2. 2.Department of Pharmacogenomics, Johnson and Johnson Pharmaceutical Research and Development, L.L.C.Raritan

Personalised recommendations