Peptide Characterization and Application Protocols pp 241-267

Part of the Methods in Molecular Biology™ book series (MIMB, volume 386)

Cell-Penetrating Proline-Rich Peptidomimetics

  • Josep Farrera-Sinfreu
  • Ernest Giralt
  • Miriam Royo
  • Fernando Albericio

Summary

Cell-penetrating peptides (CPPs) offer potential as delivery agents for the cellular administration of drugs. However, the pharmacological utility of CPPs that are derived from natural amino acids is limited by their rapid metabolic degradation, low membrane permeability, and toxicity. Various peptidomimetics able to overcome these problems have been described, including peptides formed by D-amino acids and β -peptides. This chapter summarizes the synthesis of γ-proline-derived peptides and polyproline dendrimers for drug delivery applications, and includes descriptions of several modifications in the γ-peptides (mimicking the side chains of the α -amino acids) or modulating the dendrimer surface. 5(6)-Carboxyfluorescein labeling of the aforementioned peptidomimetics for use in cell translocation studies is also described. Furthermore, different protocols for the study of the drug delivery capabilities of these compounds are reviewed, including enzymatic stability studies, cellular uptake measurements by plate fluorimetry and flow cytometry, confocal laser scanning microscopy, and cytotoxicity assays.

Key Words

Cellular uptake drug delivery foldamers γ-peptides solid-phase dendrimers 

References

  1. 1.
    Tréhin, R., and Merkle, H. P. (2004) Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur. J. Phar. Biophar. 58, 209–223.CrossRefGoogle Scholar
  2. 2.
    Zorko, M., and Langel, Ü. (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv. Drug Delivery Rev. 57, 529–545.CrossRefGoogle Scholar
  3. 3.
    Davidson, B. L., and Breakefield, X. O. (2004) Neurological diseases: viral vecors for gene delivery to the nervous system. Nat. Rev. Neurosci. 4, 353–364.CrossRefGoogle Scholar
  4. 4.
    Connor, J., and Huang, L. (1985) Efficient cytoplasmatic delivery of a fluorescent dye by pH-sensitive immunoliposomes. J. Cell. Biol. 101, 582–589.PubMedCrossRefGoogle Scholar
  5. 5.
    Foldvari, M., Mezei, C., and Mezei, M. (1991) Intracellular delivery of drugs by liposomes containing P0 glycoprotein from peripheral nerve myelin into human M21 melanoma cells. J. Pharm. Sci. 80, 1020–1028.PubMedCrossRefGoogle Scholar
  6. 6.
    Gentile, F. T., Doherty, E. J., Rein, D. H., Shoichet, M. S., Winn, S. R. (1995) Polymer science for macroencapsulation of cells for central nervous system transplantation. Reactive Polymers 25, 207–227.CrossRefGoogle Scholar
  7. 7.
    Chakrabarti, R., Wylie, D. E., and Schuster S. M. (1989) Transfer of monoclonal antibodies into mammalian cells by electroporation. J. Biol. Chem. 264, 15, 494–15,500.Google Scholar
  8. 8.
    Leamon, C. P., and Low, P. S. (1991) Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc. Natl. Acad. Sci. USA 88, 5572–5576.PubMedCrossRefGoogle Scholar
  9. 9.
    Sadler, K., Eom, K. D., Yang, J-L., Dimitrova, Y., and Tam, J. P. (2002) Translocating proline-rich peptides from the antimicrobial peptide Bactenecin 7. Biochemistry 41, 14,150–14,157.CrossRefGoogle Scholar
  10. 10.
    Singh, D., Kiarash, R., Kawamura, K., LaCasse, E. C., and Gariépy, J. (1998) Penetration and intracellular routing of nucleus-directed peptide-based shuttles (loligomers) in eukaryotic cells. Biochemistry 37, 5798–5809.PubMedCrossRefGoogle Scholar
  11. 11.
    Brokx, R. D., Bisland, S. K., and Gariépy, J. (2002) Designing peptide-based scaffolds as drug delivery vehicles. J. Controlled Release 78, 115–123.CrossRefGoogle Scholar
  12. 12.
    Elmquist, E., Lindgren, M., Bartfai, T., and Langel, Ü. (2001) VE-cadherin-derived cell penetrating peptide, pVEC, with carrier functions. Exp. Cell Res. 269, 237–244.PubMedCrossRefGoogle Scholar
  13. 13.
    Umezawa, N., Gelman, M. A., Haigis, M. C., Raines, R. T., and Gellman, S. H. (2002) Translocation of a beta-peptide across cell membranes. J. Am. Chem. Soc. 124, 368–369.PubMedCrossRefGoogle Scholar
  14. 14.
    Rueping, M., Mahajan, Y., Sauer, M., and Seebach, D. (2002) Cellular uptake studies with beta-peptides. ChemBioChem 3, 257–259.PubMedCrossRefGoogle Scholar
  15. 15.
    Potocky, T. B., Menon, A. K., and Gellman, S. H. (2003) Cytoplasmic and nuclear delivery of a TAT-derived peptide and a beta-peptide after endocytic uptake into HeLa cells. J. Biol. Chem. 278, 50,188–50,194.CrossRefGoogle Scholar
  16. 16.
    Garcia-Echeverria, C., and Ruetz, S. (2003) Beta-Homolysine oligomers: a new class of Trojan carriers. Bioorg. Med. Chem. Lett. 13, 247–251.PubMedCrossRefGoogle Scholar
  17. 17.
    Farrera-Sinfreu, J., Zaccaro, L., Vidal, D., et al. (2004) A new class of foldamers based on cis-γ-amino-L-proline. J. Am. Chem. Soc. 126, 6048–6057.PubMedCrossRefGoogle Scholar
  18. 18.
    Farrera-Sinfreu, J., Giralt, E., Castel, S., Albericio, F., and Royo, M. (2005) Cell-penetrating cis-γ-amino-L-proline-derived peptides. J. Am. Chem. Soc. 127, 9459–9468.PubMedCrossRefGoogle Scholar
  19. 19.
    Crespo, L., Sanclimens, G., Royo, M., Giralt, E., and Albericio, F. (2002) Branched poly(proline) peptides: an efficient new approach to the synthesis of repetitive branched peptides. Eur. J. Org. Chem. 11, 1756–1762.CrossRefGoogle Scholar
  20. 20.
    Crespo, L., Sanclimens, G., Montaner, B., et al. (2002) Peptide dendrimers based on polyproline helices. J. Am. Chem. Soc. 124, 8876–8883.PubMedCrossRefGoogle Scholar
  21. 21.
    Sanclimens, G., Crespo, L., Giralt, E., Royo, M., and Albericio, F. (2004) Solid-phase synthesis of second-generation polyproline dendrimers. Biopolymers (Pept. Sci.) 76, 283–297.CrossRefGoogle Scholar
  22. 22.
    Sanclimens, G., Crespo, L., Giralt, E., Albericio, F., and Royo, M., (2005) Preparation of de novo globular proteins based on proline dendrimers. J. Org. Chem. 70, 6274–6281..PubMedCrossRefGoogle Scholar
  23. 23.
    Sanclimens, G., Shen, H., Giralt, E., Albericio, F., Saltzman, M. W., and Royo, M. (2005) Synthesis and screening of a small library of proline based biodendrimers for use as delivery agents. Biopolymers 80, 800–814.PubMedCrossRefGoogle Scholar
  24. 24.
    Fernàndez-Carneado, J., Kogan, M. J., Castel, S., Pujals, S., and Giralt, E. (2004) Potential peptide carriers: amphipathic proline-rich peptides derived from the N-terminal domain of γ -zein. Angew. Chem. Int. Ed. 43, 1811–1814.CrossRefGoogle Scholar
  25. 25.
    Fernàndez-Carneado, J., Kogan, M. J., Pujals, S., and Giralt, E. (2004) Amphipathic peptides and drug delivery. Biopolymers (Pept. Sci.) 76, 196–203.CrossRefGoogle Scholar
  26. 26.
    Foerg, C., Ziegler, V., Fernàndez-Carneado, J., et al. (2005) Decoding the entry of two novel cell-penetrating peptides in HeLa cells: lipid raft-mediated endocytosis and endosomal escape. Biochemistry 44, 72–81.PubMedCrossRefGoogle Scholar
  27. 27.
    Fernàndez-Carneado, J., Kogan, M. J., Van Mau, N., et al. (2005) Fatty acyl moieties: improving Pro-rich peptide uptake inside HeLa cells. J. Pept. Res. 65, 580–590.PubMedCrossRefGoogle Scholar
  28. 28.
    Lloyd-Williams, P., Albericio, F., and Giralt, E. (1997) Chemical Approaches to the Synthesis of Peptides and Proteins. CRC, Boca Raton, FL.Google Scholar
  29. 29.
    Feichtinger, K., Zapf, C., Sings, H. L., and Goodman, M. (1998) Diprotected triflylguanidines: a new class of guanidinylation reagents. J. Org. Chem. 63, 3804–3805.CrossRefGoogle Scholar
  30. 30.
    Rose, K., and Vizzavona, J. (1999) Stepwise solid-phase synthesis of polyamides as linkers. J. Am. Chem. Soc. 121, 7034–7038.CrossRefGoogle Scholar
  31. 31.
    Liu, Y., Peterson, D. A., Kimura, H., and Schubert, D. (1997) Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J. Neurochem. 69, 581–593.PubMedCrossRefGoogle Scholar
  32. 32.
    Kaiser, E., Colescott, R. L., Bossinger, C. D., and Cook, P. I. (1970) Color test for detection of free terminal amino groups in solid-phase synthesis of peptides. Anal. Biochem. 34, 594–598.CrossRefGoogle Scholar
  33. 33.
    Madder, A., Farcy, N., Hosten, N. G. C., et al. (1999) A novel sensitive colorimetric assay for visual detection of solid-phase bound amines. Eur. J. Org. Chem. 2787–2791.Google Scholar
  34. 34.
    Christensen, T. (1979) A qualitative test for monitoring coupling completeness in solid-phase peptide synthesis using chloranil. Acta Chem. Scan. 33, 760–766.Google Scholar
  35. 35.
    Kuisle, O., Lolo, M., Quiñoà, E., and Riguera, R. (1999) Monitoring the solid-phase synthesis of depsides and depsipeptides. A color test for hydroxyl groups linked to a resin. Tetrahedron 55, 14,807–14,812.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Josep Farrera-Sinfreu
    • 1
  • Ernest Giralt
    • 2
  • Miriam Royo
    • 3
  • Fernando Albericio
    • 1
  1. 1.Barcelona Biomedical Research InstituteUniversity of BarcelonaBarcelona
  2. 2.Barcelona Biomedical Research Institute and Department of Organic ChemistryUniversity of BarcelonaBarcelona
  3. 3.Combinatorial Chemistry UnitUniversity of BarcelonaBarcelona

Personalised recommendations