Peptide Characterization and Application Protocols pp 227-240

Part of the Methods in Molecular Biology™ book series (MIMB, volume 386)

Radiometal-Labeled Somatostatin Analogs for Applications in Cancer Imaging and Therapy

  • Jason S. Lewis
  • Carolyn J. Anderson

Summary

The use of radiolabeled peptides for the diagnosis and therapy of cancer has increased greatly over the last few decades. Skillfully crafted peptide systems, which have high affinity for receptors that are overexpressed in human tumors, offer the potential to improve the characterization, grading, and eventual therapy of human cancer. Robust peptide systems can be labeled with radioactive atoms for imaging purposes using single-photon emission computed tomography and positron emission tomography technologies, or can be labeled with therapeutic nuclides for the efficient killing of tumor cells. This method-based review discusses one such class of receptor-targeted peptides and their radiolabeling with radioactive metals. The somatostatin receptor is upregulated in many types of cancer, and when labeled with a radiometal atom via a bifunctional chelate, can be employed as an agent for the imaging and radiotherapy of cancer. This review will discuss the methods used in the synthesis of the somatostatin peptides, conjugation with bifunctional chelators, and radiolabeling with metal radionuclides. Methods will also be presented for the in vitro and in vivo evaluation of the compounds produced.

Key Words

Radiometal peptide bifunctional chelator PET somatostatin imaging therapy 

References

  1. 1.
    Reichlin, S. (1983) Somatostatin (part 1). New Engl. J. Med. 309,1495–1501.PubMedCrossRefGoogle Scholar
  2. 2.
    Reichlin, S. (1983) Somatostatin (part 2). New Engl. J. Med. 309,1556–1563.PubMedCrossRefGoogle Scholar
  3. 3.
    Guillemin, R. (1978) Peptides in the brain: the new endocrinology of the neuron. Science 202,390–402.PubMedCrossRefGoogle Scholar
  4. 4.
    Reubi, J. C., Kvols, L. K., Krenning, E. P., and Lamberts, S. W. J. (1990) Distribution of somatostatin receptors in normal and tumor tissue. Metabolism 39(Suppl 2),78–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Bauer, W., Briner, U., Doepfner, W., et al. (1982) SMS 201-995. Life Sci. 31,1133–1140.PubMedCrossRefGoogle Scholar
  6. 6.
    de Jong, M., Bernard, B. F., de Bruin, E., et al. (1998) Internalization of radiolabelled [DTPA0]octreotide and [DOTA0, Tyr3]octreotide: peptides for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Nucl. Med. Commun. 19,283–288.PubMedCrossRefGoogle Scholar
  7. 7.
    de Jong, M., Breeman, W. A. P., Bakker, W. H., et al. (1998) Comparison of 111In-labeled somatostatin analogues for tumor scintigraphy and radionuclide therapy. Cancer Res. 58,437–441.PubMedGoogle Scholar
  8. 8.
    Lewis, J. S., Lewis, M. R., Srinivasan, A., Schmidt, M. A., Wang, J., and Anderson, C. J. (1999) Comparison of four 64Cu-labeled somatostatin analogs in vitro and in a tumor-bearing rat model: Evaluation of new derivatives for PET imaging and targeted radiotherapy. J. Med. Chem. 42,1341–1347.PubMedCrossRefGoogle Scholar
  9. 9.
    Krenning, E. P., Bakker, W. H., Kooij, P. P. M., et al. (1992) Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J. Nucl. Med. 33,652–658.PubMedGoogle Scholar
  10. 10.
    Anderson, C. J., Pajeau, T. S., Edwards, W. B., Sherman, E. L. C., Rogers, B. E., and Welch, M. J. (1995) In vitro and in vivo evaluation of copper-64-labeled octreotide conjugates. J. Nucl. Med. 36,2315–2325.PubMedGoogle Scholar
  11. 11.
    Anderson, C. J., Jones, L. A., Bass, L. A., et al. (1998) Radiotherapy, toxicity and dosimetry of copper-64-labeled TETA-octreotide in tumor-bearing rats. J. Nucl. Med. 39,1944–1951.PubMedGoogle Scholar
  12. 12.
    Lewis, J. S., Srinivasan, A., Schmidt, M. A., Schwarz, S. W., Jones, L. A., and Anderson, C. J. (1998) Radiotherapy and dosimetry of copper-64-TETA-Tyr3-octreotate in a somatostatin receptor positive tumor bearing animal model [abstract]. J. Nucl. Med. 39,104P.Google Scholar
  13. 13.
    Anderson, C. J., Dehdashti, F., Cutler, P. D., et al. (2001) Copper-64-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J. Nucl. Med. 42,213–221.PubMedGoogle Scholar
  14. 14.
    Sprague, J. E., Peng, Y., Sun, X., et al. (2004) Preparation and biological evaluation of copper-64–labeled Tyr3-octreotate using a cross-bridged macrocyclic chelator. Clin. Cancer Res. 10,8674–8682.PubMedCrossRefGoogle Scholar
  15. 15.
    de Jong, M., Valkema, R., Kwekkeboom, D. J., and Krenning, E. P. (2004) Somatostatin receptor targeted-radio-ablation-of tumors. Endocrine Updates 24,233–249.CrossRefGoogle Scholar
  16. 16.
    Kwekkeboom, D. J., Mueller-Brand, J., Paganelli, G., et al. (2005) Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J. Nucl. Med. 46(suppl. 1),62S–66S.PubMedGoogle Scholar
  17. 17.
    Maecke, H. R., Hofmann, M., and Haberkorn, U. (2005) 68Ga-labeled peptides in tumor imaging. J. Nucl. Med. 46(suppl. 1),172S–178S.PubMedGoogle Scholar
  18. 18.
    McQuade, P., Rowland, D. J., Lewis, J. S., and Welch, M. J. (2005) Positron-emitting isotopes produced on biomedical cyclotrons. Curr. Med. Chem. 12,807–818.PubMedCrossRefGoogle Scholar
  19. 19.
    Blower, P. J., Lewis, J. S., and Zweit, J. (1996) Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl. Med. Biol. 23,957–980.PubMedCrossRefGoogle Scholar
  20. 20.
    McCarthy, D. W., Shefer, R. E., Klinkowstein, R. E., et al. (1997) Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl. Med. Biol. 24,35–43.PubMedCrossRefGoogle Scholar
  21. 21.
    McCarthy, D. W., Bass, L. A., Cutler, P. D., et al. (1999) High purity production and potential applications of copper-60 and copper-61. Nucl. Med. Biol. 26,351–358.PubMedCrossRefGoogle Scholar
  22. 22.
    Sun, X., and Anderson, C. J. (2004) Production and applications of copper-64 radiopharmaceuticals. Meth. Enzymol. 386,237–261.PubMedCrossRefGoogle Scholar
  23. 23.
    Vavere, A. L., and Welch, M. J. (2005) Preparation, biodistribution, and small animal pet of 45Ti-transferrin. J. Nucl. Med. 46,683–690.PubMedGoogle Scholar
  24. 24.
    Lewis, M. R., Reichert, D. E., Laforest, R., et al. (2002) Production and purification of gallium-66 for preparation of tumor-targeting radiopharmaceuticals. Nucl. Med. Biol. 29,701–706.PubMedCrossRefGoogle Scholar
  25. 25.
    Szelecsenyi, F., Boothe, T. E., Tavano, T., Plitnikas, M. E., and Tarkanyi, F. (1994) Compilation of cross sections/thick target yields for 66Ga, 67Ga and 68Ga production using Zn targets up to 30 MeV proton energy. Appl. Radiat. Isot. 45,473–500.CrossRefGoogle Scholar
  26. 26.
    Reischl, G., Rosch, F., and Machulla, H. J. (2002) Electrochemical separation and purification of yttrium-86. Radiochim. Acta 90,225–228.CrossRefGoogle Scholar
  27. 27.
    Roesch, F., and Qaim, S. M. (1993) Nuclear data relevant to the production of the positron emitting technetium isotope 94mTc via the 94Mo(p,n)-reaction. Radiochim. Acta 62,115–121.Google Scholar
  28. 28.
    Edwards, W. B., Fields, C. G., Anderson, C. J., Pajeau, T. S., Welch, M. J., and Fields, G. B. (1994) Generally applicable, convenient solid-phase synthesis and receptor affinities of octreotide analogs. J. Med. Chem. 37,3749–3757.PubMedCrossRefGoogle Scholar
  29. 29.
    Achilefu, S., Jimenez, H. N., Dorshow, R. B., et al. (2002) Synthesis, in vitro receptor binding and in vivo evaluation of fluorescein and carbocyanine peptide-based optical contrast agents. J. Med. Chem. 45,2003–2015.PubMedCrossRefGoogle Scholar
  30. 30.
    Li, W. P., Lewis, J. S., Kim, J., et al. (2002) DOTA-D-Tyr1-octreotate: a somatostatin analog for labeling with halogen and metal radionuclides for cancer imaging and therapy. Bioconjug. Chem. 13,721–728.PubMedCrossRefGoogle Scholar
  31. 31.
    Mishra, A. K., Draillard, K., Faivrechauvet, A., Gestin, J. F., Curtet, C., and Chatal, J. F. (1996) A convenient, novel approach for the synthesis of polyaza macrocyclic bifunctional chelating agents. Tetrahedron Lett. 37,7515–7518.CrossRefGoogle Scholar
  32. 32.
    Yorke, E. D., Williams, L. E., Demidecki, A. J., Heidorn, D. B., Roberson, P. L., and Wessels, B. W. (1993) Multicellular dosimetry for beta-emitting radionuclides: autoradiography, thermoluminescent dosimetry and three-dimensional dose calculations. [review]. Med. Phys. 20,543–550.PubMedCrossRefGoogle Scholar
  33. 33.
    Lewis, J. S., Laforest, R., Lewis, M. R., and Anderson, C. J. (2000) Comparative dosimetry of copper-64 and yttrium-90-labeled somatostatin analogs in a tumor-bearing rat model. Cancer Biothet. Radiopharm. 15,593–604.CrossRefGoogle Scholar
  34. 34.
    Breeman, W. A. P., de Jong, M., Visser, T. J., Erion, J. L., and Krenning, E. P. (2003) Optimising conditions for radiolabelling of DOTA-peptides with 90Y, 111In and 177Lu at high specific activities. Eur. J. Nucl. Med. Mol. Imag. 30,917–920.CrossRefGoogle Scholar
  35. 35.
    Breeman, W. A. P., de Jong, M., de Blois, E., Bernard, B. F., Konijnenberg, M., and Krenning, E. P. (2005) Radiolabelling DOTA-peptides with 68Ga. Eur. J. Nucl. Med. Mol. Imag. 32,478–485.CrossRefGoogle Scholar
  36. 36.
    Longnecker, D. S., Lilja, H. S., French, J., Kuhlmann, E., and Noll, W. (1979) Transplantation of azaserine-induced carcinomas of pancreas in rats. Cancer Lett. 7,197–202.PubMedCrossRefGoogle Scholar
  37. 37.
    Rosewicz, S., Vogt, D., Harth, N., et al. (1992) An amphicrine pancreatic cell line: AR42J cells combine exocrine and neuroendocrine properties. Eur. J. Cell Biol. 59,80–91.PubMedGoogle Scholar
  38. 38.
    Christophe, J. (1994) Pancreatic tumoral cell line AR42J: An amphicrine model. Am. J. Physiol. 266(6 pt 1),G963–G971.PubMedGoogle Scholar
  39. 39.
    Wipke, B. T., Wang, Z., Kim, J., McCarthy, T. J., and Allen, P. M. (2002) Dynamic visualization of a joint-specific autoimmune response through positron emission tomography. Nat. Immunol. 3,366–372.PubMedCrossRefGoogle Scholar
  40. 40.
    Cherry, S. R., Shao, Y., Silverman, R. E., et al. (1997) Micropet: a high resolution pet scanner for imaging small animals. IEEE. Trans. Nucl. Sci. 44,1161–1166.CrossRefGoogle Scholar
  41. 41.
    Lewis, J. S., Achilefu, S., Garbow, J. R., Laforest, R., and Welch, M. J. (2002) Small animal imaging: current technology and perspectives for oncological imaging. Eur. J. Cancer 38,2173–2188.PubMedCrossRefGoogle Scholar
  42. 42.
    Rowland, D. J., Lewis, J. S., and Welch, M. J. (2002) Molecular imaging: the application of small animal positron emission tomography. J. Cell. Biochem. Suppl 39,110–115.CrossRefGoogle Scholar
  43. 43.
    Knoess, C., Siegel, S., Smith, A., et al. (2003) Performance evaluation of the microPET R4 pet scanner for rodents. Eur. J. Nucl. Med. Mol. Imag. 30,737–747.CrossRefGoogle Scholar
  44. 44.
    Tai, Y. C., Ruangma, A., Rowland, D. J., et al. (2005) Performance evaluation of the microPET FOCUS: a third-generation microPET scanner dedicated to animal imaging. J. Nucl. Med. 46,455–463.PubMedGoogle Scholar
  45. 45.
    Boswell, C. A., Sun, X., Niu, W., et al. (2004) Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J. Med. Chem. 47,1465–1474.PubMedCrossRefGoogle Scholar
  46. 46.
    Sun, X., Wuest, M., Weisman, G. R., et al. (2002) Radiolabeling and in vivo behavior of copper-64-labeled cross-bridged cyclam ligands. J. Med. Chem. 45,469–477.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Jason S. Lewis
    • 1
  • Carolyn J. Anderson
    • 1
  1. 1.Mallinckrodt Institute of RadiologyWashington University School of MedicineSt. Louis

Personalised recommendations