Advertisement

Depsipeptide Synthesis

  • Maciej Stawikowski
  • Predrag Cudic
Part of the Methods in Molecular Biology™ book series (MIMB, volume 386)

Summary

Naturally occurring cyclic depsipeptides, peptides that contain one or more ester bonds in addition to the amide bonds, have emerged as an important source of pharmacologically active compounds or promising lead structures for the development of novel synthetically derived drugs. This class of natural products has been found in many organisms, such as fungi, bacteria, and marine organisms. It is very well known that cyclic depsipeptides and their derivatives exhibit a diverse spectrum of biological activities, including insecticidal, antiviral, antimicrobial, antitumor, tumor-promotive, anti-inflammatory, and immunosuppressive actions. However, they have shown the greatest therapeutic potential as anticancer and particularly antimicrobial agents. Difficulties associated with isolation and purification of larger quantities of this class of natural products and, particularly, unlimited access to their synthetic analogs significantly hampered cyclic depsipeptides exploitation as lead compounds for development of new drugs. As an alternative, total solution or solid-phase peptide synthesis of these important natural products and combinatorial chemistry approaches can be employed to elucidate structure–activity relationships and to find new potent compounds of this class. In this chapter, methods for formation of depsipeptide ester bonds, hydroxyl group protection, and solid-phase reaction monitoring are described.

Key Words

Depsipeptides solution and solid-phase synthesis ester bond formation hydroxyl group protection reaction monitoring 

References

  1. [1]
    Grabley, S. and Thiericke, R., (1999) Drug Discovery from Nature. Springer-Verlag, Heidelberg.Google Scholar
  2. [2]
    Newman, D. J., Cragg, G. M., and Snader K. M. (2003) Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 66, 1022–1037.PubMedCrossRefGoogle Scholar
  3. [3]
    Cragg, G. M., Newman, D. J., and Snader, K. M. (1997) Natural products in drug discovery development. J. Nat. Prod. 60, 52–60.PubMedCrossRefGoogle Scholar
  4. [4]
    Bozdogan, B., Esel, D., Whitener, C., Browne, F. A., and Appelbaum P. C. (2003) Antibacterial susceptibility of a vancomycin-resistant Staphylococcus aureus strain isolated at the Hershey Medical Center. J. Antimicrob. Chemother. 52, 864–868.PubMedCrossRefGoogle Scholar
  5. [5]
    Loffet A. (2002) Peptides as drugs: is there a market? J. Pept. Sci. 8, 1–7.PubMedCrossRefGoogle Scholar
  6. [6]
    Loffet A. (2001) Peptides as drugs: is there a market? Peptides: The Wave of the Future ( Lebl, M. and Hougten, R. A., eds.). American Peptide Society: pp. 214–216.Google Scholar
  7. [7]
    Andersson, L., Blomberg, L., Flegl, M., Lepsa, L., Nilsson, B., and Verlander M. (2000) Large-scale synthesis of peptides. Biopolymers 55, 227–250.PubMedCrossRefGoogle Scholar
  8. [8]
    Verlander M. (2000) Large-scale manufacturing methods for peptides—a status report. Chim. Oggi, 20, 62–66.Google Scholar
  9. [9]
    Adessi, C. and Soto, C. (2002) Converting a peptide into drug: strategies to improve stability and bioavailability. Curr. Med. Chem. 9, 963–978.PubMedCrossRefGoogle Scholar
  10. [10]
    Davies, J. S. (2003) The cyclization of peptides and depsipeptides. J. Pept. Sci. 9, 471–501.PubMedCrossRefGoogle Scholar
  11. [11]
    Lambert, J. N., Mitchell, J. P., and Roberts, K. D. (2001) The synthesis of cyclic peptides. J. Chem. Soc, Perkin Trans. 1, 471–484.CrossRefGoogle Scholar
  12. [12]
    Li, P. and Roller, P. P. (2002) Cyclization strategies in peptide derived drug design. Curr. Top. Med. Chem. 2, 325–341.PubMedCrossRefGoogle Scholar
  13. [13]
    Blackburn, C. and Kates, S. A. (1997) Solid-phase synthesis of cyclic homodetic peptides. Methods Enzymol. 289, 175–198.PubMedCrossRefGoogle Scholar
  14. [14]
    Hruby, V. J. and Bonner, G. G. (1994) Design of novel synthetic peptides including cyclic conformationally and topographically constrained analogs. Methods. Mol. Biol. 35, 201–240.PubMedGoogle Scholar
  15. [15]
    Kates, S. A., Sole, N. A., Albericio, F., and Barany, G. (1994) Solid-phase synthesis of cyclic peptides, in Peptides: Design, Synthesis, and Biological Activity. Brikhauser Boston: pp. 39–59.Google Scholar
  16. [16]
    Shemyakin, M. M., Shchukina, L. A., Vinogradova, E. I., Ravidel, G. A., and Ovchinnikov, Y. A. (1966) Mutual replaceability of amide and ester groups in biologically active peptide and depsipeptides. Experimentia 22, 535–536.CrossRefGoogle Scholar
  17. [17]
    Bramson, H. N., Thomas, N. E., and Kaiser, E. T. (1985) The use of N-methylated peptides and depsipeptides to probe the binding of heptapeptide substrates to cAMP-dependent protein kinase. J. Biol. Chem. 260, 15,452–15,457.Google Scholar
  18. [18]
    Arad, O. and Goodman, M., (1990) Depsipeptide analogues of elastin repeating sequences: synthesis. Biopolymers, 29, 1633–1649.PubMedCrossRefGoogle Scholar
  19. [19]
    Coombs, G. S., Rao, M. S., Olson, A. J., Dawson, P. E., and Madison, E. L. (1999) Revisiting catalysis by chymotrypsin family serine proteases using peptide substrates and inhibitors with unnatural main chains. J. Biol. Chem. 274, 24,074–24,079.CrossRefGoogle Scholar
  20. [20]
    Davidson, B. S. (1993) Ascidians: producers of amino acid-derived metabolites. Chem. Rev. 93, 1771–1791.CrossRefGoogle Scholar
  21. [21]
    Fusetani, N. and Matsunaga, S. (1993) Bioactive sponge peptides. Chem. Rev. 93, 1793–1806.CrossRefGoogle Scholar
  22. [22]
    Simmons, T. L., and rianasolo, E., McPhail, K., Flatt, P., and Gerwick, H. W. (2005) Marine natural products as anticancer drugs. Mol. Chem. Ther. 4, 333–342.Google Scholar
  23. [23]
    Woodford, N. (2003) Novel agents for the treatment of resistant Gram-positive infections. Expert. Opin. Investig. Drugs. 12, 117–137.PubMedCrossRefGoogle Scholar
  24. [24]
    McCafferty, D. G., Cudic, P., Frankel, B. A., Barkallah, S., Kruger, R. G., and Li, W. (2002) Chemistry and biology of the ramoplanin family of peptide antibiotics. Biopolymers 66, 261–284.PubMedCrossRefGoogle Scholar
  25. [25]
    Humphrey, J. M. and Chamberlin, A. R. (1997) Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino acids into peptides. Chem. Rev. 97, 2243–2266.PubMedCrossRefGoogle Scholar
  26. [26]
    Anteunis, M. O. J. and Sharma, N. K. (1988) N,N-Bis(2-oxo-3-oxazolidinyl)phosphinic chloride (BOP-Cl) mediated cyclization of a linear precursor of virginiamycin S. Contra indication for using hydroxybenzotriazole as racemization suppressor. Bull. Soc. Chim. Belg. 97, 281–292.CrossRefGoogle Scholar
  27. [27]
    Kopple, K. D. (1972) Synthesis of cyclic peptides. J. Pharm. Sci. 61, 1345–1356.CrossRefGoogle Scholar
  28. [28]
    Brady, S. F., Varga, S. L., Freidinger, R. M., et al. (1979) Practical synthesis of cyclic peptides, with an example of dependence of cyclization yield upon linear sequence. J. Org. Chem. 44, 3101–3105.CrossRefGoogle Scholar
  29. [29]
    Chu, K. S., Negrete, G. R., and Konopelski, J. P. (1991) Asymmetric total synthesis of (+) jasplakinolide. J. Org. Chem. 56, 5196–5202.CrossRefGoogle Scholar
  30. [30]
    White, J. D. and Amedio, J. C. (1989) Total synthesis of geodiamolide A—a novel cyclodepsipeptide of marine origin. J. Org Chem. 54, 736–738.CrossRefGoogle Scholar
  31. [31]
    Marder, O. and Albericio, F. (2003) Industrial application of coupling reagents in peptides. Chim. Oggi 6, 35–40.Google Scholar
  32. [32]
    Berry J. D., Digiovanna V. C., Metrick S. S., and Murugan R. (2001) Catalysis by 4-Dialkylaminopyridines. Arkivoc i, 201–226Google Scholar
  33. [33]
    Kuisle, O., Lolo, M., Quinoa, E., and Riguera, R., (1999) Solid Phase Synthesis of Depsides and Depsipeptides. Tetrahedron 55, 14,807–14,812.CrossRefGoogle Scholar
  34. [34]
    Kuisle, O., Quinoa, E., and Riguera, R., (1999) A general methodology for automated solid-phase synthesis of depsides and depsipeptides. Preparation of a valinomycin analogue. J. Org Chem. 64, 8063–8075.PubMedCrossRefGoogle Scholar
  35. [35]
    Stawikowski, M. and Cudic, P. (2006) A novel strategy for the solid-phase synthesis of cyclic lipodepsipeptides. Tetrahedron Lett. 47, 8587–8590.PubMedCrossRefGoogle Scholar
  36. [36]
    Murakami, N., Wang, W., Tamura, S., and Kobayashi, M. (2000) Synthesis and biological property of carba and 20-deoxo analogues of arenastatin A. Bioorg Med. Chem. Lett. 10, 1823–18236.PubMedCrossRefGoogle Scholar
  37. [37]
    Joullie, M. M., Portonovo, P., Liang, B., and Richard, D. J. (2000) Total synthesis of (–)-tamandarin B. Tetrahedron Lett. 41, 9373–9376.CrossRefGoogle Scholar
  38. [38]
    Dutton, F. E., Byung, H. L., Johnson, S. S. Coscarelli, E.M., and Lee P. H. (2003) Restricted conformation analogues of anthelmintic cyclopeptide. J. Med. Chem., 46, 2057–2073.PubMedCrossRefGoogle Scholar
  39. [39]
    Katakai, R., Kobayashi, K., Yamada, K., Oku, H., and Emori, N. (2004) Synthesis of sequential polydepsipeptides utilizing a new approach for the synthesis of depsipeptides. Biopolymers 73, 641–644.PubMedCrossRefGoogle Scholar
  40. [40]
    Mitsunobu, O. and Yamada, M. (1967) Preparation of esters of carboxylic and phosphoric acid via quaternary phosphonium salts. Bull.Chem. Soc. Jpn. 40, 2380–2382CrossRefGoogle Scholar
  41. [41]
    Mitsunobu, O. (1981) The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis 1, 1–28.CrossRefGoogle Scholar
  42. [42]
    Boger, D. L., Keim, H., Oberhauser, B., Schreiner, E. P., and Foster, C. A. (1999) Total synthesis of HUN-7293. J. Am. Chem. Soc. 121, 6197–6205CrossRefGoogle Scholar
  43. [43]
    Grab, T. and Brase S. (2005) Efficient synthesis of lactate-containing depsipeptides by the Mitsunobu reaction of lactates. Adv. Synth. Catal. 347, 1765–1768.CrossRefGoogle Scholar
  44. [44]
    Inanaga, J., Hirata, K., Saeki, H., Katsuki, T., and Yamaguchi, M. (1979) Rapid esterification by means of mixed anhydride and its application to large-ring lactonization. Bull. Chem. Soc. Jpn. 52, 7, 1989–1993.CrossRefGoogle Scholar
  45. [45]
    Chen, J. and Forsyth, J. C. (2004) Natural product synthesis special feature: total synthesis of the marine cyanobacterial cyclodepsipeptide apratoxin A. Proc. Natl. Acad. Sci. USA 101, 12,067–12,072.Google Scholar
  46. [46]
    Zou, B., Long, K, and Ma, D. (2005) Total synthesis and cytotoxicity studies of a cyclic depsipeptide with proposed structure of palau’amide. Org. Lett. 7, 4237–4240.PubMedCrossRefGoogle Scholar
  47. [47]
    Davies, J. S., Howe, J., Jayatilake J., and Riley T. (1997) Synthesis and applications of cyclopeptides and depsipeptides. Lett. Pept. Sci. 4, 441–445.Google Scholar
  48. [48]
    Albericio, F., Burger, K, Ruiz-Rodrigez, J., and Spengler, J. (2005) A new strategy for solid-phase depsipeptide synthesis using recoverable building blocks. Org. Lett. 7, 597–600.PubMedCrossRefGoogle Scholar
  49. [49]
    Albericio, F., Burger, K., Cupido, T. K, Ruiz, J., and Spengler, J. (2005) Application of hexafluoroacetone as protecting and activating reagent in solid phase peptide and depsipeptide synthesis. Arkivoc vi, 191–199.Google Scholar
  50. [50]
    Corey, E. J., Cho, H., Rucker, C., and Hua, D., H. (1981) Studies with trialkylsilyltriflates: new syntheses and applications. Tetrahedron Lett. 22, 3455–3458.CrossRefGoogle Scholar
  51. [51]
    Yuan, W., Jia, Y., Tian, J., et al. (2001) Class I and III polyhydroxyalkanoate synthases from Ralstonia eutopha and Allochromatium vinosum: characterization and substrate specificity studies. Arch. Biochem. Biophys. 394, 87–98.PubMedCrossRefGoogle Scholar
  52. [52]
    Burger, K., Windeisen, E., and Pires, R., (1995) New efficient strategy for the incorporation of (S)-isoserine into peptides. J. Org. Chem. 60, 7641–7645.CrossRefGoogle Scholar
  53. [53]
    Radics, G., Pires, R., Koksch, B., El-Kousy, S. M., and Burger, K. (2003) New building blocks for peptide and depsipeptide synthesis: hexafluoroacetone protected L-homoserine and D,L-homocysteine derivatives. Tetrahedron Lett. 44, 1059–1062.CrossRefGoogle Scholar
  54. [54]
    Kaiser, E., Colescott, R. L., Bossinger, C. D., and Cook, P. I. (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal. Biochem. 34, 595–598.PubMedCrossRefGoogle Scholar
  55. [55]
    Pomonis, J. G., Severson, R. F., and Freeman, P. J. (1969) Spot test diagnostic of hydroxyl groups. J. Chromatog. 40, 78–84.CrossRefGoogle Scholar
  56. [56]
    Kuisle, O., Lolo, M., Quinoa, E., and Riguera, R., (1999) Monitoring the solid-phase synthesis of depsides and depsipeptides. A color test for hydroxyl groups linked to a resin. Tetrahedron 55, 14,807–14,812.CrossRefGoogle Scholar
  57. [57]
    Attardi, M. E., Falchi, A., and Taddei, M. (2000) A sensitive visual test for detection of OH groups on resin. Tetrahedron Lett. 41, 7395–7399.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Maciej Stawikowski
    • 1
  • Predrag Cudic
    • 1
  1. 1.Department of Chemistry & BiochemistryFlorida Atlantic UniversityBoca Raton

Personalised recommendations