Plant Genomics pp 175-198 | Cite as

Heterologous and Cell-Free Protein Expression Systems

  • Naser Farrokhi
  • Maria Hrmova
  • Rachel A. Burton
  • Geoffrey B. Fincher
Part of the Methods in Molecular Biology™ book series (MIMB, volume 513)


In recognition of the fact that a relatively small percentage of ‘named’ genes in databases have any experimental proof for their annotation, attention is shifting towards the more accurate assignment of functions to individual genes in a genome. The central objective will be to reduce our reliance on nucleotide or amino acid sequence similarities as a means to define the functions of genes and to annotate genome sequences. There are many unsolved technical difficulties associated with the purification of specific proteins from extracts of biological material, especially where the protein is present in low abundance, has multiple isoforms or is found in multiple post-translationally modified forms. The relative ease with which cDNAs can be cloned has led to the development of methods through which cDNAs from essentially any source can be expressed in a limited range of suitable host organisms, so that sufficient levels of the encoded proteins can be generated for functional analysis. Recently, these heterologous expression systems have been supplemented by more robust prokaryotic and eukaryotic cell-free protein synthesis systems. In this chapter, common host systems for heterologous expression are reviewed and the current status of cell-free expression systems will be presented. New approaches to overcoming the special problems encountered during the expression of membrane-associated proteins will also be addressed. Methodological considerations, including the characteristics of codon usage in the expressed DNA, peptide tags that facilitate subsequent purification of the expressed proteins and the role of post-translational modifications, are examined.


Annotation Functional analysis Host systems In vitro expression Membrane proteins 



The financial support of the Australian Research Council, the Grains Research and Development Corporation and the South Australian State Government is gratefully acknowledged. We thank Bianca Kuchel for her invaluable technical assistance with aspects of the work described here.


  1. 1.
    Brown, D. and Sjölander, K. (2006) Functional classification using phylogenomic inference. PLoS Comput. Biol. 2, 479–483.CrossRefGoogle Scholar
  2. 2.
    Hrmova, M., Burton, R.A., Biely, P., Lahnstein, J., and Fincher, G.B. (2006) Hydrolysis of (1,4)-β-d-mannans in barley (Hordeum vulgare L.) is mediated by the concerted action of (1,4)-β-d-mannan endohydrolase and β-d-mannosidase. Biochem. J. 399, 77–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Sawasaki, T., Ogasawara, T., Morishita, R., and Endo, Y. (2002) A cell-free protein synthesis system for high-throughput proteomics. Proc. Natl. Acad. Sci. USA 99, 14652–14657.PubMedCrossRefGoogle Scholar
  4. 4.
    Endo, Y., Otsuzuki, S., Ito, K., and Miura, K. (1992) Production of an enzymatic active protein using a continuous flow cell-free translation system. J. Biotechnol. 25, 221–230.PubMedCrossRefGoogle Scholar
  5. 5.
    Kost, T.A. (1997) Expression systems: gene expression systems in the genomics era. Curr. Opin. Biotechnol. 8, 539–541.PubMedCrossRefGoogle Scholar
  6. 6.
    Dubessay, P., Pages, M., Delbac, F., Bastien, P., Vivares, C., and Blaineau, C. (2004) Can heterologous gene expression shed (a torch) light on protein function? Trends Biotechnol. 22, 557–559.PubMedCrossRefGoogle Scholar
  7. 7.
    Endo, Y. and Sawasaki, T. (2004) High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. J. Struct. Funct. Genomics 5, 45–57.PubMedCrossRefGoogle Scholar
  8. 8.
    Gustafsson, C., Govindarajan, S., and Minshull, J. (2004) Codon bias and heterologous protein expression. Trends Biotechnol. 22, 346–353.PubMedCrossRefGoogle Scholar
  9. 9.
    Olins, P.O. (1996) Quantity versus authenticity of heterologously produced proteins: an inevitable compromise? Curr. Opin. Biotechnol. 7, 487–488.PubMedCrossRefGoogle Scholar
  10. 10.
    Braun, P. and LaBaer, J. (2003) High throughput protein production for functional proteomics. Trends Biotechnol. 21, 383–388.PubMedCrossRefGoogle Scholar
  11. 11.
    Geisse, S., Gram, H., Kleuser, B., and Kocher, H.P. (1996) Eukaryotic expression systems: a comparison. Protein Expr. Purif. 8, 271–282.PubMedCrossRefGoogle Scholar
  12. 12.
    Persans, M.W., Nieman, K., and Salt, D.E. (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc. Natl. Acad. Sci. USA 98, 9995–10000.PubMedCrossRefGoogle Scholar
  13. 13.
    Opekarova, M. and Tanner, W. (2003) Specific lipid requirements of membrane proteins – a putative bottleneck in heterologous expression. Biochim. Biophys. Acta. 1610, 11–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Opekarova, M., Robl, I., Grassl, R., and Tanner, W. (1999) Expression of eukaryotic plasma membrane transporter HUP1 from Chlorella kessleri in Escherichia coli. FEMS Microbiol. Lett. 174, 65–72.PubMedCrossRefGoogle Scholar
  15. 15.
    Robl, I., Grassl, R., Tanner, W., and Opekarova, M. (2000) Properties of a reconstituted eukaryotic hexose/proton symporter solubilized by structurally related non-ionic detergents: specific requirement of phosphatidylcholine for permease stability. Biochim. Biophys. Acta 1463, 407–418.PubMedCrossRefGoogle Scholar
  16. 16.
    Kurland, C. and Gallant, J. (1996) Errors of heterologous protein expression. Curr. Opin. Biotechnol. 7, 489–493.CrossRefGoogle Scholar
  17. 17.
    Baca, A.M. and Hol, W.G. (2000) Overcoming codon bias: a method for high-level overexpression of Plasmodium and other AT-rich parasite genes in Escherichia coli. Int. J. Parasitol. 30, 113–118.PubMedCrossRefGoogle Scholar
  18. 18.
    Hochuli, E., Dobeli, H., and Schacher, A. (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J. Chromatogr. 411, 177–184.PubMedCrossRefGoogle Scholar
  19. 19.
    Huth, J.R., Bewley, C.A., Jackson, B.M., Hinnebusch, A.G., Clore, G.M., and Gronenborn, A.M. (1997) Design of an expression system for detecting folded protein domains and mapping macromolecular interactions by NMR. Protein Sci. 6, 2359–2364.PubMedCrossRefGoogle Scholar
  20. 20.
    LaVallie, E.R., DiBlasio, E.A., Kovacic, S., Grant, K.L., Schendel, P.F., and McCoy, J.M. (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology 11, 187–193.PubMedCrossRefGoogle Scholar
  21. 21.
    Smith, D.B. and Johnson, K.S. (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40.PubMedCrossRefGoogle Scholar
  22. 22.
    di Guan, C., Li, P., Riggs, P.D., and Inouye, H. (1988) Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 67, 21–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Davis, G.D., Elisee, C., Newham, D.M., and Harrison, R.G. (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol. Bioeng. 65, 382–388.PubMedCrossRefGoogle Scholar
  24. 24.
    Chong, S., Mersha, F.B., Comb, D.G., Scott, M.E., Landry, D., Vence, L.M., Perler, F.B., Benner, J., Kucera, R.B., Hirvonen, C.A., Pelletier, J.J., Paulus, H., and Xu, M.Q. (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192, 271–281.PubMedCrossRefGoogle Scholar
  25. 25.
    Terpe, K. (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60, 523–533.PubMedGoogle Scholar
  26. 26.
    Waugh, D.S. (2005) Making the most of affinity tags. Trends Biotechnol. 23, 316–320.PubMedCrossRefGoogle Scholar
  27. 27.
    Kapust, R.B. and Waugh, D.S. (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 8, 1668–1674.PubMedCrossRefGoogle Scholar
  28. 28.
    Smith, D.B. (2000) Generating fusions to glutathione S-transferase for protein studies. Methods Enzymol. 326, 254–270.PubMedCrossRefGoogle Scholar
  29. 29.
    Pagny, S., Bouissonnie, F., Sarkar, M., Follet-Gueye, M., Driouich, A., Schachter, H., Faye, L., and Gomord, V. (2003) Structural requirements for Arabidopsis beta1,2-xylosyltransferase activity and targeting to the Golgi. Plant J. 33, 189–203.PubMedCrossRefGoogle Scholar
  30. 30.
    Lorimer, G.H. (1996) A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo. Faseb J. 10, 5–9.PubMedGoogle Scholar
  31. 31.
    Baneyx, F. and Mujacic, M. (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22, 1399–1408.PubMedCrossRefGoogle Scholar
  32. 32.
    Weickert, M.J., Doherty, D.H., Best, E.A., and Olins, P.O. (1996) Optimization of heterologous protein production in Escherichia coli. Curr. Opin. Biotechnol. 7, 494–499.PubMedCrossRefGoogle Scholar
  33. 33.
    Blum, P., Ory, J., Bauernfeind, J., and Krska, J. (1992) Physiological consequences of DnaK and DnaJ overproduction in Escherichia coli. J. Bacteriol. 174, 7436–7444.PubMedGoogle Scholar
  34. 34.
    Wetzel, R. (1994) Mutations and off-pathway aggregation of proteins. Trends Biotechnol. 12, 193–198.PubMedCrossRefGoogle Scholar
  35. 35.
    Georgiou, G. and Valax, P. (1996) Expression of correctly folded proteins in Escherichia coli. Curr. Opin. Biotechnol. 7, 190–197.CrossRefGoogle Scholar
  36. 36.
    Raikhel, N. and Chrispeels, M. (2000) Protein sorting and vesicle traffic, in Biochemistry ' Molecular Biology of Plants (Buchanan, B.B., Gruissem, W., and Jones, R., eds.), John Wiley ' Sons, New York, pp. 160–201.Google Scholar
  37. 37.
    Spremulli, L. (2000) Protein synthesis, assembly, and degradation, in Biochemistry ' Molecular Biology of Plants (Buchanan, B.B., Gruissem, W., and Jones, R., eds.), John Wiley ' Sons, New York, pp. 412–454.Google Scholar
  38. 38.
    Bencurova, M., Rendic, D., Fabini, G., Kopecky, E., Altmann, F., and Wilson, I. (2003) Expression of eukaryotic glycosyltransferases in the yeast Pichia pastoris. Biochimie 85, 413–422.PubMedCrossRefGoogle Scholar
  39. 39.
    Grisshammer, R. and Tate, C.G. (1995) Overexpression of integral membrane proteins for structural studies. Q. Rev. Biophys. 28, 315–422.PubMedCrossRefGoogle Scholar
  40. 40.
    Malissard, M., Zeng, S., and Berger, E.G. (1999) The yeast expression system for recombinant glycosyltransferases. Glycoconj. J. 16, 125–139.PubMedCrossRefGoogle Scholar
  41. 41.
    Eckart, M.R. and Bussineau, C.M. (1996) Quality and authenticity of heterologous proteins synthesized in yeast. Curr. Opin. Biotechnol. 7, 525–530.PubMedCrossRefGoogle Scholar
  42. 42.
    Sadhukhan, R. and Sen, I. (1996) Different glycosylation requirements for the synthesis of enzymatically active angiotensin-converting enzyme in mammalian cells and yeast. J. Biol. Chem. 271, 6429–6434.PubMedCrossRefGoogle Scholar
  43. 43.
    Wagner, S., Bader M.L., Drew, D., and de Gier, J.W. (2006) Rationalizing membrane protein overexpression. Trends Biotechnol. 24, 364–371.PubMedCrossRefGoogle Scholar
  44. 44.
    McCarroll, L. and King, L.A. (1997) Stable insect cell cultures for recombinant protein production. Curr. Opin. Biotechnol. 8, 590–594.PubMedCrossRefGoogle Scholar
  45. 45.
    Liepman, A.H., Wilkerson, C.G., and Keegstra, K. (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc. Natl. Acad. Sci. USA 102, 2221–2226.PubMedCrossRefGoogle Scholar
  46. 46.
    Makrides, S.C. (1999) Components of vectors for gene transfer and expression in mammalian cells. Protein Expr. Purif. 17, 183–202.PubMedCrossRefGoogle Scholar
  47. 47.
    Marino, M. (1989) Expression systems for heterologous protein production. BioPharm. 2, 18–33.Google Scholar
  48. 48.
    Daly, R. and Hearn, M.T. (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J. Mol. Recognit. 18, 119–138.PubMedCrossRefGoogle Scholar
  49. 49.
    Elbein, A.D. (1984) Inhibitors of the biosynthesis and processing of N-linked oligosaccharides. CRC Crit. Rev. Biochem. 16, 21–49.PubMedCrossRefGoogle Scholar
  50. 50.
    Colosimo, A., Goncz, K.K., Holmes, A.R., Kunzelmann, K., Novelli, G., Malone, R.W., Bennett, M.J., and Gruenert, D.C. (2000) Transfer and expression of foreign genes in mammalian cells. Biotechniques 29, 314–318.PubMedGoogle Scholar
  51. 51.
    Kammerloher, W., Fischer, U., Piechottka, G.P., and Schaffner, A.R. (1994) Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J. 6, 187–199.PubMedCrossRefGoogle Scholar
  52. 52.
    Perrin, R., DeRocher, A., Bar-Peled, M., Zeng, W., Norambuena, L., Orellana, A., Raikhel, N., and Keegstra, K. (1999) Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284, 1976–1979.PubMedCrossRefGoogle Scholar
  53. 53.
    Hellwig, S., Drossard, J., Twyman, R., and Fischer, R. (2004) Plant cell cultures for the production of recombinant proteins. Nat. Biotechnol. 22, 1415–1422.PubMedCrossRefGoogle Scholar
  54. 54.
    Li, Y., Geng, Y., Song, H., Zheng, G., Huan, L., and Qiu, B. (2004) Expression of a human lactoferrin N-lobe in Nicotiana benthmiana with potato virus X-based agroinfection. Biotechnol. Lett. 26, 953–957.PubMedCrossRefGoogle Scholar
  55. 55.
    Marillonnet, S., Giritch, A., Gils, M., Kandzia, R., Klimyuk, V., and Gleba, Y. (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc. Natl. Acad. Sci. USA 101, 6852–6857.PubMedCrossRefGoogle Scholar
  56. 56.
    Selth, L.A., Randles, J.W., and Rezaian, M.A. (2004) Host responses to transient expression of individual genes encoded by tomato leaf curl virus. Mol. Plant Microbe Interact. 17, 27–33.PubMedCrossRefGoogle Scholar
  57. 57.
    Wagner, B., Hufnagl, K., Radauer, C., Wagner, S., Baier, K., Scheiner, O., Wiedermann, U., and Breiteneder, H. (2004) Expression of the B subunit of the heat-labile enterotoxin of Escherichia coli in tobacco mosaic virus-infected Nicotiana benthamiana plants and its characterization as mucosal immunogen and adjuvant. J. Immunol. Methods 287, 203–215.PubMedCrossRefGoogle Scholar
  58. 58.
    Gomord, V. and Faye, L. (2004) Posttranslational modification of therapeutic proteins in plants. Curr. Opin. Plant Biol. 7, 171–181.PubMedCrossRefGoogle Scholar
  59. 59.
    Fischer, R., Stoger, E., Scillberg, S., Christou, P., and Twyman, R. M. (2004) Plant based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7, 152–158.PubMedCrossRefGoogle Scholar
  60. 60.
    Maliga, P. and Graham, I. (2004) Molecular farming and metabolic engineering promise a new generation of high-tech crops. Curr. Opin. Plant Biol. 7, 149–151.PubMedCrossRefGoogle Scholar
  61. 61.
    Porta, C. and Lomonossoff, G.P. (2002) Viruses as vectors for the expression of foreign sequences in plants. Biotech. Genet. Eng. Rev. 19, 245–291.Google Scholar
  62. 62.
    Gleba, Y., Marillonnet, S., and Klimyuk, V., (2004) Engineering viral expression vectors for plants: the “full virus” and the “deconstructed virus” strategies. Curr. Opin. Plant Biol. 7, 182–188.PubMedCrossRefGoogle Scholar
  63. 63.
    Gleba, Y., Klimyuk, V., and Marillonnet, S. (2005) Magnifection – a new platform for expressing recombinant vaccines in plants. Vaccine 23, 2042–2048.PubMedCrossRefGoogle Scholar
  64. 64.
    Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., and Gleba, Y. (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotech. 23, 718–723.CrossRefGoogle Scholar
  65. 65.
    Gils, M.,Kandzia, R., Marillonnet, S., Klimyuk, V., and Gleba, Y. (2005) High-yield production of authentic human growth hormone using a plant virus-based expression system. Plant Biotech. J. 3, 613–620.CrossRefGoogle Scholar
  66. 66.
    Santi, L., Giritch, A., Roy, C., Marillonnet, S., Klimyuk, V., Gleba, Y., Webb, R., Arntzen, C.J., and Mason, H.S. (2006) Protection conferred by recombinant Yersinia pestis antigens produced by a rapid and highly scalable plant expression system. Proc. Nat. Aca. Sci. USA 103, 861–866.CrossRefGoogle Scholar
  67. 67.
    Awram, P., Gardner, R.C., Forster, R.L., and Bellamy A.R. (2002) The potential of plant viral vectors and transgenic plants for subunit vaccine production. Adv. Virus Res. 58, 81–124.PubMedCrossRefGoogle Scholar
  68. 68.
    Giritch, A., Marillonnet, S., Engler, C., van Eldik, G., Botterman, J., Klimyuk, V., and Gleba, Y. (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc. Natl. Acad. Sci. USA 103, 14701–14706.PubMedCrossRefGoogle Scholar
  69. 69.
    Frank, W., Ratnadewi, D., and Reski, R. (2005) Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta 220, 384–394.PubMedCrossRefGoogle Scholar
  70. 70.
    Cove, D., Knight, C., and Lamparter, T. (1997) Mosses as model systems. Trends Plant Sci. 2, 99–105.CrossRefGoogle Scholar
  71. 71.
    Reski, R. and Cove, D.J. (2004) Physcomitrella patens. Curr. Biol. 14, R261–R262.PubMedCrossRefGoogle Scholar
  72. 72.
    Landy, A. (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem. 58, 913–949.PubMedCrossRefGoogle Scholar
  73. 73.
    Schaefer, D.G. and Zryd, J.P. (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J. 11, 1195–1206.PubMedCrossRefGoogle Scholar
  74. 74.
    Decker, E.L. and Reski, R. (2004) The moss bioreactor. Curr. Opin. Plant Biol. 7(2), 166–70.PubMedCrossRefGoogle Scholar
  75. 75.
    Koprivova, A., Altmann, F., Gorr, G., Kopriva, S., Reski, R., and Decker, E. (2003) N-glycosylation in the moss Physcomitrella patens is organised similarly to that in higher plants. Plant Biol. 5, 582–591.CrossRefGoogle Scholar
  76. 76.
    Zubay, G. (1973) In vitro synthesis of proteins in microbial systems. Annu. Rev. Genet. 7, 267–287.PubMedCrossRefGoogle Scholar
  77. 77.
    Nirenberg, M.W. and Matthaei, J.H. (1981) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polynucleotides. Proc. Natl. Acad. Sci. USA 47, 1588–1602.CrossRefGoogle Scholar
  78. 78.
    Spirin, A.S. (2004) High-throughput cell-free systems for synthesis of functionally active proteins. Trends Biotech. 22, 538–545.CrossRefGoogle Scholar
  79. 79.
    Miles, L.A. (2005) Robust and cost effective cell-free expression of biopharmaceuticals: Escherichia coli and wheat embryo, in Modern Biopharmaceuticals, Design, Development and Optimization, Volume 2 (Knäblein, J., ed.), Wiley-VCH Verlag GmbH ' Co. KGaA, Weinheim, pp. 1063–1081.Google Scholar
  80. 80.
    Dixon, N.E. (2006) Cell-free protein synthesis. FEBS J. 273, 4131–4132.CrossRefGoogle Scholar
  81. 81.
    Yokoyama, S. (2003) Protein expression systems for structural genomics and proteomics. Curr. Opin. Chem. Biol. 7, 39–43.PubMedCrossRefGoogle Scholar
  82. 82.
    Vinarov, D.A., Lytle, B.L., Peterson, F.C., Tyler, E.M., Volkman, B.F., and Markley, J.L. (2004) Cell-free protein production and labeling protocol for NMR-based structural proteomics. Nat. Methods 1, 149–53.PubMedCrossRefGoogle Scholar
  83. 83.
    Spirin, A.S., Baranov, V.I., Ryabova, L.A., Ovodov S.Y., and Alakhov, Y.B. (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242, 1162–1164.PubMedCrossRefGoogle Scholar
  84. 84.
    Kigawa T., Yabuki T., Yoshida Y., Tsutsui M., Ito Y., Shibata, T., and Yokoyama, S. (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett. 442, 15–19.PubMedCrossRefGoogle Scholar
  85. 85.
    Madin, K., T Sawasaki, T., Ogasawara, T., and Y Endo, Y. (2000) A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc. Natl. Acad. Sci. USA 97, 559–564.PubMedCrossRefGoogle Scholar
  86. 86.
    Mikami, S., Masutani, M.N., Yokoyama, S., and Imataka, H. (2006a) An efficient mammalian cell-free translation system supplemented with translation factors. Protein Expr. Purif. 46, 348–357.CrossRefGoogle Scholar
  87. 87.
    Ezure, T., Suzuki, T., Higashide, S., Shintani, E., Endo, K., Kobayashi, S., Shikata, M., Ito, M., Tanimizu, K., and Nishimura, O. (2006) Cell-free protein synthesis system prepared from insect cells by freeze-thawing. Biotechnol. Prog. 22, 1570–1577.PubMedCrossRefGoogle Scholar
  88. 88.
    Mikami, S., Kobayashi, T., Yokoyama, S., and Imataka, H. (2006b) A hybridoma-based in vitro translation system that efficiently synthesizes glycoproteins. J. Biotechnol. 127, 65–78.CrossRefGoogle Scholar
  89. 89.
    Palmer, E., Liu, H., Khan, F., Taussig, M.J., and He, M. (2006) Enhanced cell-free protein expression by fusion with immunoglobulin Cκ domain. Protein Sci. 15, 2842–2846.PubMedCrossRefGoogle Scholar
  90. 90.
    Arai, R., Kukimoto-Niino, M., Uda-Tochio, H. Morita, S., Uchikubo-Kamo, T., Akasaka, R., Etou, Y., Hayashizaki, Y., Kigawa, T., Terada, T., Shirouzu, M., and Yokoyama, S. (2005) Crystal structure of an enhancer of rudimentary homolog (ERH) at 2.1 Å resolution. Protein Sci. 14, 1888–1893.PubMedCrossRefGoogle Scholar
  91. 91.
    Staunton, D., Schlinkert, R., Zanetti, G., Colebrook, S.A., and Campbell, I.D. (2006) Cell-free expression and selective isotope labelling in protein NMR. Magn. Reson. Chem. 44, S2–S9.PubMedCrossRefGoogle Scholar
  92. 92.
    Kang, S.H., Kim, D.M., Kim, H.J., Jun, S.Y., Lee, K.Y., and Kim, H.J. (2005) Cell-free production of aggregation-prone proteins in soluble and active forms. Biotechnol. Prog. 21, 1412–1419.PubMedCrossRefGoogle Scholar
  93. 93.
    Kawasaki, T., Gouda, M.D., Sawasaki, T., Takai, K., and Endo, Y. (2003) Efficient synthesis of a disulfide-containing protein through a batch cell-free system from wheat germ. Eur. J. Biochem. 270, 4680–4786.CrossRefGoogle Scholar
  94. 94.
    Jiang, X., Ookubo, Y., Fujii, I., Nakano, H., and Yamane, T. (2002) Expression of Fab fragment of catalytic antibody 6D9 in an Escherichia coli in vitro coupled transcription/translation system. FEBS Lett. 514, 290–294.PubMedCrossRefGoogle Scholar
  95. 95.
    Klammt, C., Schwarz, D., Löhr, F., Schneider, B., Dötsch, V., and Bernhard, F. (2006) Cell-free expression as an emerging technique for the large scale production of integral membrane protein. FEBS J. 273, 4141–4153.PubMedCrossRefGoogle Scholar
  96. 96.
    Klammt, C., Schwarz, D., Eifler, N., Engel, A., Piehler, J., Haase, W., Hahn, S., Dötsch,V., and Bernhard, F. (2007) Cell-free production of G protein-coupled receptors for functional and structural studies. J. Struct. Biol. (in press); online: doi:10.1016/j.jsb.2007.01.006Google Scholar
  97. 97.
    Klammt, C., Schwarz, D., Fendler, K., Haase, W., Dotsch, V., and Bernhard, F. (2005) Evaluation of detergents for the soluble expression of alpha-helical and beta-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS J. 272, 6024–6038.PubMedCrossRefGoogle Scholar
  98. 98.
    Pocanschi, C.L., Dahmane, T., Gohon, Y., Apell, H.-J., Kleinschmidt, J.H., and Popot, J.-L. (2006) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45, 13954–13961.PubMedCrossRefGoogle Scholar
  99. 99.
    Lyford, L.K. and Rosenberg, R.L. (1999) Cell-free expression and functional reconstitution of homo-oligomeric alpha7 nicotinic acetylcholine receptors into planar lipid bilayers. J. Biol. Chem. 274, 25675–25681.PubMedCrossRefGoogle Scholar
  100. 100.
    Perrin, R. (2001) Cellulose: how many cellulose synthases to make a plant? Curr. Biol. 11, R213–R216.PubMedCrossRefGoogle Scholar
  101. 101.
    Voinnet, O., Rivas, S., Mestre, P., and Baulcombe, D. (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33, 949–956.PubMedCrossRefGoogle Scholar
  102. 102.
    Komarnytsky, S., Gaume, A., Garvey, A., Borisjuk, N., and Raskin, I. (2004) A quick and efficient system for antibiotic-free expression of heterologous genes in tobacco roots. Plant Cell Rep. 22, 765–773.PubMedCrossRefGoogle Scholar
  103. 103.
    Bonnal, S., Boutonnet, C., Prado-Lourenco, L., and Vagner, S. (2003) IRESdb: the Internal Ribosome Entry Site database. Nucleic Acids Res. 31, 427–428.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Naser Farrokhi
  • Maria Hrmova
  • Rachel A. Burton
  • Geoffrey B. Fincher
    • 1
  1. 1.Australian Centre for Plant Functional Genomics, School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondAustralia

Personalised recommendations