Investigating the Mode of Action of Proline-Rich Antimicrobial Peptides Using a Genetic Approach: A Tool to Identify New Bacterial Targets Amenable to the Design of Novel Antibiotics

  • Marco Scocchi
  • Maura Mattiuzzo
  • Monica Benincasa
  • Nikolinka Antcheva
  • Alessandro Tossi
  • Renato Gennaro
Part of the Methods In Molecular Biology™ book series (MIMB, volume 494)


The proline-rich antimicrobial peptides (PRPs) are considered to act by crossing bacterial membranes without altering them and then binding to, and functionally modifying, one or more specific targets. This implies that they can be used as molecular hooks to identify the intracellular or membrane proteins that are involved in their mechanism of action and that may be subsequently used as targets for the design of novel antibiotics with mechanisms different from those now in use. The targets can be identified by using peptide-based affinity columns or via the genetic approach described here. This approach depends on chemical mutagenesis of a PRP-susceptible bacterial strain to select mutants that are either more resistant or more susceptible to the relevant peptide. The genes conferring the mutated phenotype can then be isolated and identified by subcloning and sequencing. In this manner, we have currently identified several genes that are involved in the mechanism of action of these peptides, including peptide-transport systems or potential resistance factors, which can be used or taken into account in drug design efforts.


Antimicrobial peptide proline-rich peptide Bac7 antibiotic resistant mutant chemical mutagenesis fluorescence quenching cell uptake 


  1. 1.
    Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Natl. Rev. Microbiol. 3, 238–250.Google Scholar
  2. 2.
    Brown, K. L. and Hancock, R. E. (2006) Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 18, 24–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Hancock, R. E. and Sahl, H. G. (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Natl. Biotechnol. 24, 1551–1557.CrossRefGoogle Scholar
  4. 4.
    Shai, Y. (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66, 236–248.CrossRefPubMedGoogle Scholar
  5. 5.
    Pag, U. and Sahl, H. G. (2002) Multiple activities in lantibiotics – models for the design of novel antibiotics? Curr. Pharm. Des. 8, 815–833.CrossRefPubMedGoogle Scholar
  6. 6.
    Gennaro, R., Zanetti, M., Benincasa, M., Podda, E. and Miani, M. (2002) Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Curr. Pharm. Des. 8, 763–778.CrossRefPubMedGoogle Scholar
  7. 7.
    Otvos, L., Jr. (2002) The short proline-rich antibacterial peptide family. Cell Mol. Life Sci. 59, 1138–1150.CrossRefPubMedGoogle Scholar
  8. 8.
    Podda, E., Benincasa, M., Pacor, S., Micali, F., Mattiuzzo, M., Gennaro, R. and Scocchi, M. (2006) Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim. Biophys. Acta 1760, 1732–1740.PubMedGoogle Scholar
  9. 9.
    Cudic, M. and Otvos, L., Jr. (2002) Intracellular targets of antibacterial peptides. Curr. Drug Targets 3, 101–106.CrossRefPubMedGoogle Scholar
  10. 10.
    Otvos, L., Jr., Rogers, M. E., Consolvo, P. J., Condie, B. A., Lovas, S., Bulet, P. and Blaszczyk-Thurin, M. (2000) Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39, 14150–14159.CrossRefPubMedGoogle Scholar
  11. 11.
    Kragol, G., Lovas, S., Varadi, G., Condie, B. A., Hoffmann, R. and Otvos, L., Jr. (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40, 3016–3026.CrossRefPubMedGoogle Scholar
  12. 12.
    Boman, H. G., Agerberth, B. and Boman, A. (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect. Immun. 61, 2978–2984.PubMedGoogle Scholar
  13. 13.
    Shi, Y., Cromie, M. J., Hsu, F. F., Turk, J. and Groisman, E. A. (2004) PhoP-regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B. Mol. Microbiol. 53, 229–241.CrossRefPubMedGoogle Scholar
  14. 14.
    Mattiuzzo, M., Bandiera, A., Gennaro, R., Benincasa, M., Pacor, S., Antcheva, N. and Scocchi, M. (2007) Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol. Microbiol. 66, 151–163.CrossRefPubMedGoogle Scholar
  15. 15.
    Tossi, A., Scocchi, M., Zanetti, M., Gennaro, R., Storici, P. and Romeo, D. (1997) An approach combining rapid cDNA amplification and chemical synthesis for the identification of novel, cathelicidin-derived, antimicrobial peptides. Methods Mol. Biol. 78, 133–150.PubMedGoogle Scholar
  16. 16.
    Miller, J. H. (1992) A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Volume 1. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  17. 17.
    Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: a Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  18. 18.
    Chen, W. P. and Kuo, T. T. (1993) A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res. 21, 2260.CrossRefPubMedGoogle Scholar
  19. 19.
    Dower, W. J., Miller, J. F. and Ragsdale, C. W. (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16, 6127–6145.CrossRefPubMedGoogle Scholar
  20. 20.
    Benincasa, M., Scocchi, M., Podda, E., Skerlavaj, B., Dolzani, L. and Gennaro, R. (2004) Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides 25, 2055–2061.CrossRefPubMedGoogle Scholar
  21. 21.
    Lavina, M., Pugsley, A. P. and Moreno, F. (1986) Identification, mapping, cloning and characterization of a gene (sbmA) required for microcin B17 action on Escherichia coli K12. J. Gen. Microbiol. 132, 1685–1693.PubMedGoogle Scholar
  22. 22.
    Salomon, R. A. and Farias, R. N. (1995) The peptide antibiotic microcin 25 is imported through the TonB pathway and the SbmA protein. J. Bacteriol. 177, 3323–3325.PubMedGoogle Scholar
  23. 23.
    Yorgey, P., Lee, J., Kordel, J., Vivas, E., Warner, P., Jebaratnam, D. and Kolter, R. (1994) Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. Proc. Natl. Acad. Sci. U S A 91, 4519–4523.CrossRefPubMedGoogle Scholar
  24. 24.
    Locher, K. P., Lee, A. T. and Rees, D. C. (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098.CrossRefPubMedGoogle Scholar
  25. 25.
    de Cristobal, R. E., Solbiati, J. O., Zenoff, A. M., Vincent, P. A., Salomon, R. A., Yuzenkova, J., Severinov, K. and Farias, R. N. (2006) Microcin J25 uptake: His5 of the MccJ25 lariat ring is involved in interaction with the inner membrane MccJ25 transporter protein SbmA. J. Bacteriol. 188, 3324–3328.CrossRefPubMedGoogle Scholar
  26. 26.
    Meacham, K. J., Zhang, L., Foxman, B., Bauer, R. J. and Marrs, C. F. (2003) Evaluation of genotyping large numbers of Escherichia coli isolates by enterobacterial repetitive intergenic consensus-PCR. J. Clin. Microbiol. 41, 5224–5226.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marco Scocchi
    • 1
  • Maura Mattiuzzo
    • 1
  • Monica Benincasa
    • 1
  • Nikolinka Antcheva
    • 1
  • Alessandro Tossi
    • 1
  • Renato Gennaro
    • 1
  1. 1.Department of Life SciencesUniversity of TriesteItaly

Personalised recommendations