Leukemia pp 347-367 | Cite as

Identification of Protein Interaction Partners by the Yeast Two-Hybrid System

  • Maria-Paz Garcia-Cuellar
  • Deniz Mederer
  • Robert K. Slany
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 538)

Summary

The two-hybrid system is a genetic method to search for and to identify direct interaction partners of a protein of interest. This method is instrumental to elucidate the transformation mechanism of several oncogenes that play a role in childhood leukaemia. With respect to mixed lineage leukaemia gene (MLL) fusions, two-hybrid screening was applied to discover proteins that bind to various MLL fusion partners. Here we describe a streamlined protocol that enables any average molecular biology laboratory to conduct and evaluate a standard two-hybrid screen. Starting with a general explanation of the biological background of the two-hybrid method, this chapter covers the construction of bait vectors and two comprehensive protocols for screening either by yeast mating or yeast transformation. In addition, it also gives guidelines for the evaluation of two-hybrid results.

Key words:

Two-hybrid screening Protein–protein interaction MLL fusion partner 

Notes

Acknowledgments

Work in the authors’ laboratory is funded by DFG, Deutsche Krebshilfe, and the EU.

References

  1. 1.
    Fields S, Song O. (1989). A novel genetic system to detect protein–protein interactions. Nature;340:245–246.PubMedCrossRefGoogle Scholar
  2. 2.
    Legrain P, Selig L. (2000). Genome-wide protein interaction maps using two-hybrid systems. FEBS Lett;480:32–36.PubMedCrossRefGoogle Scholar
  3. 3.
    Zeisig DT, Bittner CB, Zeisig BB, Garcia-Cuellar MP, Hess JL, Slany RK. (2005). The eleven-nineteen-leukemia protein ENL connects nuclear MLL fusion partners with chromatin. Oncogene;24:5525–5532.PubMedCrossRefGoogle Scholar
  4. 4.
    Erfurth F, Hemenway CS, de Erkenez AC, Domer PH. (2004). MLL fusion partners AF4 and AF9 interact at subnuclear foci. Leukemia; 18:92–102.PubMedCrossRefGoogle Scholar
  5. 5.
    Bursen A, Moritz S, Gaussmann A, Moritz S, Dingermann T, Marschalek R. (2004). Interaction of AF4 wild-type and AF4.MLL fusion protein with SIAH proteins: indication for t(4;11) pathobiology? Oncogene;23:6237–6249.PubMedCrossRefGoogle Scholar
  6. 6.
    Srinivasan RS, de Erkenez AC, Hemenway CS. (2003). The mixed lineage leukemia fusion partner AF9 binds specific isoforms of the BCL-6 corepressor. Oncogene;22:3395–3406.PubMedCrossRefGoogle Scholar
  7. 7.
    Begay-Muller V, (2002). Ansieau S, Leutz A. The LIM domain protein Lmo2 binds to AF6, a translocation partner of the MLL oncogene. FEBS Lett;521:36–38.PubMedCrossRefGoogle Scholar
  8. 8.
    Hemenway CS, de Erkenez AC, Gould GC. (2001). The polycomb protein MPc3 interacts with AF9, an MLL fusion partner in t(9;11)(p22;q23) acute leukemias. Oncogene;20:3798–3805.PubMedCrossRefGoogle Scholar
  9. 9.
    Garcia-Cuellar MP, Zilles O, Schreiner SA, Birke M, Winkler TH, Slany RK. (2001). The ENL moiety of the childhood leukemia-associated MLL-ENL oncoprotein recruits human Polycomb 3. Oncogene;20:411–419.PubMedCrossRefGoogle Scholar
  10. 10.
    Fuchs U, Rehkamp G, Haas OA, et al. (2001). The human formin-binding protein 17 (FBP17) interacts with sorting nexin, SNX2, and is an MLL-fusion partner in acute myelogeneous leukemia. Proc Natl Acad Sci U S A;98:8756–8761.PubMedCrossRefGoogle Scholar
  11. 11.
    So CW, So CK, Cheung N, Chew SL, Sham MH, Chan LC. (2000). The interaction between EEN and Abi-1, two MLL fusion partners, and synaptojanin and dynamin: implications for leukaemogenesis. Leukemia;14:594–601.PubMedCrossRefGoogle Scholar
  12. 12.
    Garcia-Cuellar MP, Schreiner SA, Birke M, Hamacher M, Fey GH, Slany RK. (2000). ENL, the MLL fusion partner in t(11;19), binds to the c-Abl interactor protein 1 (ABI1) that is fused to MLL in t(10;11)+. Oncogene;19:1744–1751.PubMedCrossRefGoogle Scholar
  13. 13.
    Shinobu N, Maeda T, Aso T, et al. (1999). Physical interaction and functional antagonism between the RNA polymerase II elongation factor ELL and p53. J Biol Chem;274:17003–17010.PubMedCrossRefGoogle Scholar
  14. 14.
    Yam JW, Jin DY, So CW, Chan LC. (2004). Identification and characterization of EBP, a novel EEN binding protein that inhibits Ras signaling and is recruited into the nucleus by the MLL-EEN fusion protein. Blood;103:1445–1453.PubMedCrossRefGoogle Scholar
  15. 15.
    Ma J, Ptashne M. (1987). Deletion analysis of GAL4 defines two transcriptional activating segments. Cell;48:847–853.PubMedCrossRefGoogle Scholar
  16. 16.
    Guthrie C FGR. (2002). Methods in Enzymology, Guide to Yeast Genetics and Molecular and Cellular Biology, Part B., Vol. 350. New York: Academic.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Maria-Paz Garcia-Cuellar
    • 1
  • Deniz Mederer
    • 1
  • Robert K. Slany
    • 1
  1. 1.Department of GeneticsErlangenGermany

Personalised recommendations