Advertisement

Leukemia pp 317-334 | Cite as

In Vitro Differentiation of Embryonic Stem Cells as a Model of Early Hematopoietic Development

  • Patrycja Sroczynska
  • Christophe Lancrin
  • Stella Pearson
  • Valerie Kouskoff
  • Georges LacaudEmail author
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 538)

Summary

Embryonic Stem (ES) are pluripotent cells derived from the inner cell mass of blastocysts. ES cells differentiate in vitro into all kind of cells and the development of endothelial and hematopoietic cells from mouse ES cells has been especially established. As such, the in vitro differentiation of ES cells provides a powerful experimental model to study and determine the role of specific genes in the development of the hematopoietic system. Using this approach we have demonstrated the critical function of the transcription factor AML1/Runx1 at the onset of hematopoietic development (Blood 100:458–466, 2002; Blood 103:886–889, 2004). In this chapter, we will describe our protocols and methods for the culture of healthy ES cells, their effective differentiation toward hematopoiesis, and the quantitative analysis of their hematopoietic potential by replating or gene expression analyses.

Key words

ES cells Hematopoietic development AML1/Runx1 In vitro differentiation Embryoid bodies Hemangioblast Transcription factor Gene expression 

Notes

Acknowledgments

This work was supported by Cancer Research UK.

References

  1. 1.
    Doetschman T.C., Eistetter H., Katz M., Schmidt W., Kemler R. (1985). The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87, 27–45.PubMedGoogle Scholar
  2. 2.
    Wiles M., Keller G. (1991). Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111, 259–267.PubMedGoogle Scholar
  3. 3.
    Schmitt R., Bruyns E., Snodgrass H. (1991). Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression. Genes Dev 5, 728–740.PubMedCrossRefGoogle Scholar
  4. 4.
    Burkert U., von Ruden T., Wagner E.F. (1991). Early fetal haematopoietic development from in vitro differentiated embryonic stem cells. New Biol 3, 698–708.PubMedGoogle Scholar
  5. 5.
    Keller G., Kennedy M., Papayannopoulou T., Wiles M. (1993). Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol 13, 473–486.PubMedGoogle Scholar
  6. 6.
    Nakano T., Kodama H., Honjo T. (1994). Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101.PubMedCrossRefGoogle Scholar
  7. 7.
    Keller G. (1995). In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7, 862–869.PubMedCrossRefGoogle Scholar
  8. 8.
    Kennedy M., Firpo M., Choi K., Wall C., Robertson S., Kabrun N., Keller G. (1997). A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 386, 488–493.PubMedCrossRefGoogle Scholar
  9. 9.
    Kabrun N., Buhring H.J., Choi K., Ullrich A., Risau W., Keller G. (1997). Flk-1 expression defines a population of early embryonic hematopoietic precursors. Development 124, 2039–2048.PubMedGoogle Scholar
  10. 10.
    Choi K., Kennedy M., Kazarov A., Papadimitriou J.C., Keller G. (1998). A common precursor for hematopoietic and endothelial cells. Development 125, 725–732.PubMedGoogle Scholar
  11. 11.
    Nishikawa S.I., Nishikawa S., Hirashima M., Matsuyoshi N., Kodama H. (1998). Progressive lineage analysis by cell sorting and culture identifies FLK1+ VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125, 1747–1757.PubMedGoogle Scholar
  12. 12.
    Fehling H.J., Lacaud G., Kubo A., Kennedy M., Robertson S., Keller G., Kouskoff V. (2003). Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development 130, 4217–4227.PubMedCrossRefGoogle Scholar
  13. 13.
    Lacaud G., Keller G., Kouskoff V. (2004). Tracking mesoderm formation and specification to the hemangioblast in vitro. Trends Cardiovasc Med 14, 314–317.PubMedCrossRefGoogle Scholar
  14. 14.
    Russel E. (1979). Hereditary anemias of the mouse: a review for geneticists. Adv Genet 20, 357–459.CrossRefGoogle Scholar
  15. 15.
    Moore M., Metcalf D. (1970). Ontogeny of the hematopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Hematol 18, 279–296.CrossRefGoogle Scholar
  16. 16.
    Haar J.L., Ackerman G.A. (1971). Ultrastructural changes in mouse yolk sac associated with the initiation of vitelline circulation. Anat Rec 170, 437–456.PubMedCrossRefGoogle Scholar
  17. 17.
    Sabin F.R. (1920). Studies on the origin of blood vessels and of red corpuscles as seen in the living blastoderm of the chick during the second day of incubation. Contrib Embryol 9, 213–262.Google Scholar
  18. 18.
    Murray P.D.F. (1932). The development in vitro of the blood of the early chick embryo. Proc R Soc London 11, 497–521.CrossRefGoogle Scholar
  19. 19.
    Lacaud G., Gore L., Kennedy M., Kouskoff V., Kingsley P., Hogan C., Carlsson L., Speck N., Palis J., Keller G. (2002). Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood 100, 458–466.PubMedCrossRefGoogle Scholar
  20. 20.
    Lacaud G., Kouskoff V., Trumble A., Schwantz S., Keller G. (2004). Haploinsufficiency of Runx1 results in the acceleration of mesodermal development and hemangioblast specification upon in vitro differentiation of ES cells. Blood 103, 886–889.PubMedCrossRefGoogle Scholar
  21. 21.
    Lacaud G., Robertson S., Palis J., Kennedy M., Keller G. (2001). Regulation of hemangioblast development. Ann N Y Acad Sci 938, 96–107.PubMedCrossRefGoogle Scholar
  22. 22.
    Pearson S., Sroczynska P., Lacaud G., Kouskoff V. (2008). The step-wise specification of embryonic stem cells to hematopoietic fate is driven by sequential exposure to BMP4, Activin A, FGF and VEGF. Development 135, 1525–1535.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Patrycja Sroczynska
  • Christophe Lancrin
  • Stella Pearson
  • Valerie Kouskoff
  • Georges Lacaud
    • 1
    Email author
  1. 1.Stem Cell Biology and Research, Paterson Institute for Cancer ResearchUniversity of ManchesterManchesterUK

Personalised recommendations