Do Viruses Cause Breast Cancer?

  • James S. Lawson
Part of the Methods in Molecular Biology book series (MIMB, volume 471)

Summary

Because mouse mammary tumor virus (MMTV; the Bittner virus) is the proven cause of breast cancer in both field and experimental mice, similar viruses have long been suspects as a potential cause of human breast cancer. MMTV-like viral genetic material has been identified in human breast tumors, but there is no definitive evidence whether MMTV is causal and not merely an innocuous infection in humans. High-risk human papilloma viruses (HPVs), Epstein-Barr (EBV), and other viruses also have been identified in human breast tumors, but again there is no definitive evidenc e for a causal role. Any viral hypothesis as a cause of breast cancer must take into account the most striking epidemiologic feature of human breast cancer, the three- to sixfold differences in mortality and up to eightfold differences in incidence between some Asian and Western populations. These differences dramatically lessen to a two- to threefold difference within one or two generations of migration of females from low to high risk of breast cancer countries. In this chapter, a plausible explanation for these phenomena is offered; that is, the hypothesis that oncogenic viruses such as MMTV and high-risk HPVs may initiate some breast cancers in most populations. Furthermore, dietary patterns are suggested to determine circulating sex hormone levels, which in turn promote the replication of the hormone-dependent viruses MMTV and HPV. In addition, diet and hormones promote growth of both normal and malignant cells. Finally, the hypothesis that migrants from low to high risk of breast cancer countries change their food consumption patterns is suggested, which leads to higher circulating hormone levels, which in turn promotes viral replication, which initiates breast oncogenesis, which is enhanced by sex and growth hormones.

Key words

Breast cancer viruses mouse mammary tumor virus human papilloma virus diet; food hormones 

References

  1. 1.
    Stanford J.L., Herrington L.J, Schwartz, S.M, Weiss, N.S. (1995) Breast cancer incidence in Asian migrants to the US and their descendants. Epidemiology 6, 181–183.CrossRefPubMedGoogle Scholar
  2. 2.
    Ziegler, R.G., Hoover R.N., Pike, M.C., Hidersheim A., Nomura, A.M.Y., et al. (1993) Migration patterns and breast cancer risk in Asian American women. J Natl Cancer Instit 85, 1819–1827.CrossRefGoogle Scholar
  3. 3.
    World Health Organization (2005) World Health Statistics Annual Report. World Health Organization, Geneva, Switzerland. 2005.Google Scholar
  4. 4.
    Althuis, M.D., Dozier J.M., Anderson, W.F., Devesa, S.S., Brinton, L.A. (2005) Global trends in breast cancer incidence and mortality 1973–1997. Int J Epidemiol 34, 405–412.CrossRefPubMedGoogle Scholar
  5. 5.
    Chia, K.S. Reilly, M. Tan, C.S. Lee, J. Pawitan, Y. Adami, H.O. Hall, P. Mow B. (2005) Profound changes in breast cancer incidence may reflect changes into a Westernized lifestyle: a comparative population-based study in Singapore and Sweden. Int J Cancer 113, 302–306.CrossRefPubMedGoogle Scholar
  6. 6.
    Yager, J.D., Davidson, N.E. (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354, 270–282.CrossRefPubMedGoogle Scholar
  7. 7.
    Veronesi, U., Goldhirsch, A., Orecchia, R., Vlale, G, Boyle, P. (2005) Breast cancer. Lancet 365, 1727–1741.CrossRefPubMedGoogle Scholar
  8. 8.
    MacMahon, B. (2006) Epidemiology and the causes of breast cancer. Int J Cancer 118, 2373–8.CrossRefPubMedGoogle Scholar
  9. 9.
    MacMahon, B., Cole, P., Brown, J. (1972) Etiology of human breast cancer: a review. J Natl Cancer Inst 50, 21–42.Google Scholar
  10. 10.
    Varmus, H.E., Ringold, G., Yamamoto, K.R. (1979) Regulation of mouse mammary tumor virus gene expression by glucocor-ticoid hormones. Monogr Endocrinol 12, 253–278.PubMedGoogle Scholar
  11. 11.
    McGrath, C.M., Jones, R.F. (1978) Hormonal induction of mammary tumor viruses and its implications for carcinogenesis. Cancer Res 38, 4112–4125.PubMedGoogle Scholar
  12. 12.
    MacMahon, B., Cole, P., Aoki, K., Lin, T.M., Morgan, R.W., Woo, N.C. (1974) Urine oestrogen profiles of Asian and North American women. Int J Cancer 14, 161–167.CrossRefPubMedGoogle Scholar
  13. 13.
    Anderson, A.S., Bush, H., Lean, M., Bradby, H., Williams, R., Lea, E. (2005) Evolution of atherogenic diets in South Asian and Italian women after migration to a higher risk region. J Hum Nutr Diet 8, 33–43.CrossRefGoogle Scholar
  14. 14.
    Smith-Warner, S. A., Spiegelman, D., Adami, H. O., Beeson, W. L., van den Brandt, P. A., et al. (2001). Types of dietary fat and breast cancer: a pooled analysis of cohort studies. Int J Cancer 92, 767–774.CrossRefPubMedGoogle Scholar
  15. 15.
    Prentice, R. L., Caan, B., Chlebowski, R. T., Patterson, R., Kuller, L. H., et al (2006). Low-fat dietary pattern and risk of invasive breast cancer: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 295, 629–642.CrossRefPubMedGoogle Scholar
  16. 16.
    Hilakivi-Clarke L. (1997). Mechanisms by which high maternal fat intake during pregnancy increases breast cancer risk in female rodent offspring. Breast Cancer Res Treat 46, 199–214.CrossRefPubMedGoogle Scholar
  17. 17.
    Wakai, K., Dillon, D. S., Ohno, Y., Prihar-tono, J., Budiningsih, S., et al. (2000). Fat intake and breast cancer risk in an area where fat intake is low: a case control study in Indonesia. Int. J. Epidemiol 29, 20–28.CrossRefPubMedGoogle Scholar
  18. 18.
    Yuan, J.-M., Wang, Q.-S., Ross, R. K., Henderson, B. E., Yu, M.C. (1995). Diet and breast cancer in Shanghai and Tianjin, China. Br J Cancer 71, 1353–1358.PubMedGoogle Scholar
  19. 19.
    Key, T. J., Allen, N. E., Spencer, E. A., Travis, R.C. (2002). The effect of diet on risk of cancer. Lancet 360, 861–868.CrossRefPubMedGoogle Scholar
  20. 20.
    Goldin, B. R., Adlercreutz, H., Gorbach, S. L., Woods, M. N., Dwyer, J. T., et al. (1986). The relationship between estrogen levels and diets of Caucasian American and Oriental immigrant women. Am J Clin Nutr 44, 945–953.PubMedGoogle Scholar
  21. 21.
    Dorgan, J. F., Longcope, C., Stephenson, H. E., Falk, R. T., Miller, R., Franz, C., et al. (1997). Serum sex hormone levels are related to breast cancer risk in postmeno-pausal women. Environ Health Perspect 105(Suppl), 583–585.CrossRefPubMedGoogle Scholar
  22. 22.
    International Agency for Research on Cancer (1995). Monographs on the Evaluation of Carcinogenic Risks to Humans. Human Papillomaviruses, Vol. 64. IARC, Lyon, France.Google Scholar
  23. 23.
    van Houten, V. M., Snijders, P.J. van den Brekel, M. W., Kummer, J. A., Meijer, C. J., et al. (2001). Biological evidence that human papillomaviruses are etiologically involved in a subgroup of head and neck squamous cell carcinomas. Int J Cancer 93, 232–235.CrossRefPubMedGoogle Scholar
  24. 24.
    Brake, T., Lambert, P.F. (2005). Estrogen contributes to the onset, persistence and malignant progression of cervical cancer in a human papilloma virus-transgenic mouse model. Proc Natl Acad Sci USA 102, 2490–2495.CrossRefPubMedGoogle Scholar
  25. 25.
    Crook, T., Storey, A., Almond, N., Osborn, K., Crawford, L. (1988). Human papilloma-virus type 16 cooperates with activated ras and fos oncogenes in the hormone-dependent transformation of primary mouse cells. Proc Natl Acad Sci USA 85, 8820–8824.CrossRefPubMedGoogle Scholar
  26. 26.
    Arbeit, J M., Howley, P M., Hanahan, D. (1996). Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc Natl Acad Sci USA. 93, 2930–2925.CrossRefPubMedGoogle Scholar
  27. 27.
    Pater, M. M., Hughes, G. A., Hyslop, D. E., Nakshatri, H., Pater, A. (1988). Glucocor-ticoid-dependent oncogenic transformation by type 16 but not type 11 human papil-loma virus DNA. Nature. 335, 832–835.CrossRefPubMedGoogle Scholar
  28. 28.
    Mittal, R., Pater, A., Pater, M.M. (1993). Multiple human papillomavirus type 16 glucocorticoid response elements functional for transformation, transient expression, and DNA-protein interactions. J Virol 67, 5656–5659.PubMedGoogle Scholar
  29. 29.
    Khare, S., Pater, M.M.., Tang, S. C., Pater, A. (1997). Effect of glucocorticoid hormones on viral gene expression, growth, and dysplastic differentiation in HPV16-immor-talized ectocervical cells. Exp Cell Res 232, 353–360.CrossRefPubMedGoogle Scholar
  30. 30.
    Webster, K., Taylor, A., Gaston, K. (2001). Oestrogen and progesterone increase the levels of apoptosis induced by the human papillomavirus type 16 E2 and E7 proteins. J Gen Virol. 82, 201–213.PubMedGoogle Scholar
  31. 31.
    Khan, M. A., Canhoto, A. J., Housley, P. R., Creek, K. E., Pirisi, L. (1997). Gluco-corticoids stimulate growth of human papillomavirus type 16 (HPV16)-immor-talized human keratinocytes and support HPV16-mediated immortalization without affecting the levels of HPV16 E6/E7 mRNA. Exp Cell Res 236, 304–310.CrossRefPubMedGoogle Scholar
  32. 32.
    Mitrani-Rosenbaum, S., Tsvieli, R., Tur-Kaspa, R. (1989). Oestrogen stimulates differential transcription of human papillomavirus type 16 in SiHa cervical carcinoma cells. J Gen Virol 70, 2227–2232.CrossRefPubMedGoogle Scholar
  33. 33.
    Monsonego, J., Magdelenat, H., Catalan, F., Coscas, Y., Zerat, L., Sastre, X. (1991). Estrogen and progesterone receptors in cervical human papillomavirus related lesions. Int J Cancer 48, 533–539.CrossRefPubMedGoogle Scholar
  34. 34.
    Kedzia, W., Gozdzicka-Jozefiak, A., Kwas-niewska, A., Schmidt, M., Miturski, R., Spaczynski, M. (2000). Relationship between HPV infection of the cervix and blood serum levels of steroid hormones among pre- and postmenopausal women. Eur J Gynaecol Oncol 21, 177–179.PubMedGoogle Scholar
  35. 35.
    Gloss, B., Bernard, H. U., Seedorf, K., Klock, G. (1987). The upstream regulatory region of the human papilloma virus-16 contains an E2 protein-independent enhancer which is specific for cervical carcinoma cells and regulated by glucocorticoid hormones. EMBO J 6, 3735–3743.PubMedGoogle Scholar
  36. 36.
    Piccini, A., Storey, A, Romanos, M., Banks, L. (1997). Regulation of human papilloma-virus type 16 DNA replication by E2, gluco-corticoid hormone and epidermal growth factor. J Gen Virol 78, 1963–1970.PubMedGoogle Scholar
  37. 37.
    Lonardo, D. A., Venuti, A., Marcante, M.L. (1992). Human papillomavirus in breast cancer. Breast Cancer Res Treat 21, 95–100.CrossRefPubMedGoogle Scholar
  38. 38.
    Bratthauer, G. L., Tavassoli, F.A. O'Leary, T.J. (1992). Etiology of breast carcinoma: no apparent role for papillomavirus types 6/11/16/18. Pathol Res Pract 188, 384–386.PubMedGoogle Scholar
  39. 39.
    Wrede, D., Luqmani, Y. A., Coombes, R. C., Vousden, K.H. (1992). Absence of HPV 16 and 18 DNA in breast cancer. Br J Cancer 65, 891–894.PubMedGoogle Scholar
  40. 40.
    Gopalkrishna, V., Singh, U. R., Sodhani, P., Sharma, J. K., Hedau, S. T., Mandal, A. K., Das B.C. (1996). Absence of human papil-lomavirus DNA in breast cancer as revealed by polymerase chain reaction. Breast Cancer Res Treat 39, 197–202.CrossRefPubMedGoogle Scholar
  41. 41.
    Hennig, E. M., Suo, Z., Thoresen, S., Holm, R., Kvinnsland, S., Nesland, J.M. (1999). Human papillomavirus 16 in breast cancer of women treated for high grade cervical intraepithelial neoplasia (CIN III). Breast Cancer Res Treat 53, 121–135.CrossRefPubMedGoogle Scholar
  42. 42.
    Yu, Y., Morimoto, T., Sasa, M., Okazaki, K., Harada, Y., Fujiwara, T., Irie, Y., Takahashi, E., Tanigami, A., Izumi, K. (1999). HPV33 DNA in premalignant and malignant breast lesions in Chinese and Japanese populations. Anticancer Res 19, 5057–5061.PubMedGoogle Scholar
  43. 43.
    Damin, A.P.S., Karam, R., Zettler, C. G., Caleffi, M., Alexandre, C.O.P. (2004). Evidence for an association of human papilloma-virus and breast carcinomas. Breast Cancer Res Treat 84, 131–137.CrossRefPubMedGoogle Scholar
  44. 44.
    Widschwendter, A., Brunhuber, T., Wiede-mair, A., Mueller-Holzner, E., Marth, C. (2004). Detection of human papillomavirus DNA in breast cancer of patients with cervical cancer history. J Clin Virol 31, 292–297.CrossRefPubMedGoogle Scholar
  45. 45.
    De Villiers, E.-M., Sandstrom, R. E., zur Hausen, H., Buck, C.E. (2005). Presence of papillomatous sequences in condylomatous lesions of the mamillae and in invasive carcinoma of the breast. Breast Cancer Res 7, R1–R11.CrossRefPubMedGoogle Scholar
  46. 46.
    Kan, C.-Y., Iacopetta, B. J., Lawson, J. S., Whitaker, N. J. (2005). Identification of human papillomavirus DNA gene sequences in human breast cancer. Br J Cancer 93, 946–948.CrossRefPubMedGoogle Scholar
  47. 47.
    Tsai, J. H., Tsai, C.H. Cheng, M. H., Lin, S. J., Xu, F.L. Yang, C.C. (2005). Association of viral factors with non-familial breast cancer in Taiwan by comparison with non-cancerous, fibroadenoma, and thyroid tumor tissues. J Med Virol 75, 276–81.CrossRefPubMedGoogle Scholar
  48. 48.
    Kroupis, C., Markou, A., Vourlidis, N., Dionyssiou-Asteriou, A., Lianidou, E.S. (2006). Presence of high-risk human papil-lomavirus sequences in breast cancer tissues and association with histopathological characteristics. Clin Biochem 39, 727–731.CrossRefPubMedGoogle Scholar
  49. 49.
    Strickler, H. D., Schiffman, M. H., Shah, K.V,. Rabkin, C. S., Schiller, J. T., et al. (1998). A survey of human papillomavirus 16 antibodies in patients with epithelial cancers. Eur. J. Cancer Prev. 7, 305–313.CrossRefPubMedGoogle Scholar
  50. 50.
    Dimri, G., Band, H., Band, V. (2005). Mammary epithelial cell transformation: insights from cell culture and mouse models. Breast Cancer Res 7, 171–179.CrossRefPubMedGoogle Scholar
  51. 51.
    Bryan, J. T., Brown, D.R. (2001). Transmission of human papillomavirus type 11 infection by desquamated cornified cells. Virology 281, 35–42.CrossRefPubMedGoogle Scholar
  52. 52.
    Rintala, M.A.M., Grenman, S. E., Puranen, M. H., Isolauri, E., et al. (2005). Transmission of high risk human papillomavirus (HPV) between parent and infant: a prospective study of HPV in families in Finland. J Clin Microbiol 43, 376–381.CrossRefPubMedGoogle Scholar
  53. 53.
    Salmons, B., Miethke, T., Wintersperger, S., Muller, M., Brem, G., Gunzburg, W.H. (2000). Superantigen expression is driven by both mouse mammary tumor virus long terminal repeat-associated promoters in transgenic mice. J Virol 74, 2900–2.CrossRefPubMedGoogle Scholar
  54. 54.
    Moore, D. H., Long, C. A., Vaidya, A. A., Sheffield, J. B., Dion, A. S., Lasfargues, E.Y. (1979). Mammary tumor viruses. Adv Cancer Res 29, 347–414.CrossRefPubMedGoogle Scholar
  55. 55.
    Highman, B., Norvell, M. J., Shellenberger, T.E. (1977). Pathological changes in female C3H mice continuously fed diets containing diethylstilboestrol or 17-estradiol. J Environ Pathol Toxicol 1, 1–30.Google Scholar
  56. 56.
    Ringold, G. M., Lasgargues, E. Y., Bishop, J. M., Varmus, H.E. (1975). Production of MMTV by cultured cells in the absence and presence of hormones: assay by molecular hybridisation. Virology 65, 135–147.CrossRefPubMedGoogle Scholar
  57. 57.
    Svec, J, Links, J. (1977). MMTV production stimulated by hormones and polyamines in cells grown in semi-synthetic in vitro conditions. Int J Cancer 19, 249–257.CrossRefPubMedGoogle Scholar
  58. 58.
    Majors, J.E, Varmus, H.E. (1983). A small region of the mouse mammary tumor virus long terminal repeat confers glucocorticoid hormone regulation on a linked hetero-logous gene. Proc Natl Acad Sci USA 80, 5866–5870.CrossRefPubMedGoogle Scholar
  59. 59.
    Fernandes, G., Chandrasekar, B., Troyer, D. A., Venkatraman, J. T., Good, R.A. (1995). Dietary lipids and calorie restriction affect mammary tumor incidence and gene expression in mouse mammary tumor virus/v-Ha-ras transgenic mice. Proc Natl Acad Sci USA 92, 6494–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Wang, Y., Melana, S. M., Baker, B., Blei-weiss, I., Fernandez-Cobo, M., Mandeli, J. F., Holland, J. F., Pogo, B.G.T. (2003). High prevalence of MMTV-like env gene sequences in gestational breast cancer. Med Oncol 20, 233–236.CrossRefPubMedGoogle Scholar
  61. 61.
    Faff, O., Murray, B. A., Erfle, V., Hehlmann, R. (1993). Large scale production and purification of human retrovirus-like particles related to the mouse mammary tumor virus. FEMS Microbiol Lett 109, 289–296.CrossRefPubMedGoogle Scholar
  62. 62.
    Wang, Y., Holland, J. F., Bleiweiss, I. J., Melana, S., Liu, X., et al. (1995). Detection of mammary tumor virus env gene-like sequences in human breast cancer. Cancer Res 55, 5173–5151.PubMedGoogle Scholar
  63. 63.
    Etkind, P., Du, J., Khan, A., Pillitteri, J., Wiernik, P.H. (2000). Mouse mammary tumor virus-like env gene sequences in human breast tumors and a lymphoma of a breast cancer patient. Clin Cancer Res 6, 1273–1278.PubMedGoogle Scholar
  64. 64.
    Melana, S. M., Holland, J. F., Pogo, B.G. (2001). Search for mouse mammary tumor virus-like env sequences in cancer and normal breast from the same individuals. Clin Cancer Res 7, 283–4.PubMedGoogle Scholar
  65. 65.
    Melana, S. M., Picconi, M. A., Rossi, C., Mural, J., Alonio, L. V., Teyssie, A., et al. (2002). Detection of murine mammary tumor virus (MMTV) env gene like sequences in breast cancer from Argentine patients (Spanish). Medicina 62, 323–327.PubMedGoogle Scholar
  66. 66.
    Zangen, R., Harden, S., Cohen, D., Parrella, P., Sidransky, D. (2002). Mouse mammary tumor-like env gene as a molecular marker for breast cancer? Int J Cancer 102, 304–307.CrossRefPubMedGoogle Scholar
  67. 67.
    Ford, C. E., Tran, D., Deng, Y. M., Raw-linson, W. D., Lawson J.S. (2003). Mouse mammary tumour like virus prevalence in breast tumours of Australian and Vietnamese women. Clin Cancer Res 9, 1118–1120.PubMedGoogle Scholar
  68. 68.
    Witt, A., Hartman, B., Marton, E., Zeillinger, R., Schrieber, M., Kubista E. (2003). The mouse mammary tumour-like env gene sequence is not detectable in the breast tissue of Austrian patients. Oncol Rep 10, 1025–1029.PubMedGoogle Scholar
  69. 69.
    Ford, C. E., Faedo, M., Rawlinson, W.D. (2004). Mouse mammary tumor virus-like transcripts and DNA are found in affected cells of human breast cancer. Clin Cancer Res 10, 7284–7289.CrossRefPubMedGoogle Scholar
  70. 70.
    Mant, C., Cason, J. (2004). A human murine mammary tumour virus-like agent is an unconvincing aetiological agent for human breast cancer. Rev Med Virol 14, 169–177.CrossRefPubMedGoogle Scholar
  71. 71.
    Levine, P. H., Pogo, B.G.-T., Klouj, A., Coronel, S., Woodson, K., et al. (2004). Increasing evidence for a human breast carcinoma virus with geographic differences. Cancer 101, 721–726.CrossRefPubMedGoogle Scholar
  72. 72.
    Etkind, P. R., Stewart, A. F., Dorai, T., Purcell, D. J., Wiernik, P.H. (2004). Clonal isolation of different strains of mouse mammary tumor virus-like DNA sequences from both the breast tumors and non-Hodgkin's lymphomas of individual patients diagnosed with both malignancies. Clin Cancer Res 10, 5656–5664.CrossRefPubMedGoogle Scholar
  73. 73.
    Szabo, S., Haislip, A. M., Traina-Dorge, V., Costin, J. M., Crawford, B. E., et al. (2005). Human, rhesus macaque, and feline sequences highly similar to mouse mammary tumor virus sequences. Microsc Res Tech 68, 209–221.CrossRefPubMedGoogle Scholar
  74. 74.
    Zammarchi, F., Pistello, M., Piersigilli, A., Murr, R., Di Cristifanao, C., Naccarato, A. G., Bevilacqua, G. (2006). MMTV-like sequences in human breast cancer: a fluorescent PCR/laser microdissection approach. J Pathol 209, 436–444.CrossRefPubMedGoogle Scholar
  75. 75.
    Liu, B., Wang, Y., Melana, S. M., Pelisson, I., Najfield, V., Holland, J. F., Pogo, B.G.T. (2001). Identification of a proviral structure in human breast cancer. Cancer Res 61, 1754–1759.PubMedGoogle Scholar
  76. 76.
    Indik, S., Guensburg, W. H., Salmons, B., Rouault, F. (2005). Mouse mammary tumor virus infects human cells. Cancer Res 65, 6651–6659.CrossRefPubMedGoogle Scholar
  77. 77.
    Crepin, M., Lidereau, R., Chermann, J. C., Pouillar, T P., Magdamenat, H., Montag-nier, L. (1984). Sequences related to mouse mammary tumor virus genome in tumor cells and lymphocytes from patients with breast cancer. Biochem Biophys Res Commun 118, 324–331.CrossRefPubMedGoogle Scholar
  78. 78.
    Lushnikova, A. A., Kryukova, I. N., Rotin, D. L., Lubchenko, L.N. (2004). Detection of the env MMTV-homologous sequences in mammary carcinoma patient intestine lymphoid tissue. Doklady Biol Sci. 399, 423–426.CrossRefGoogle Scholar
  79. 79.
    Bar-Sinai, A., Bassa, N., Fischette, M., Gottesman, M. M., Love, D. C., Hanover, J. A., Hochman, J. (2005). Mouse mammary tumor virus env-derived peptide associates with nucleolar targets in lymphoma, mammary carcinoma and human breast cancer. Cancer Res 65, 7223–7230.CrossRefPubMedGoogle Scholar
  80. 80.
    Goedert, J. J., Rabkin, C. S., Ross, S.R. (2006). Prevalence of serologic reactivity against four strains of mouse mammary tumour virus among US women with breast cancer. Br J Cancer 94, 548–51.CrossRefPubMedGoogle Scholar
  81. 81.
    Astori, M., Finke, D., Karapetian, O., Acha-Orbea, H. (1999). Development of T-B cell collaboration in neonatal mice. Intern Immunol 11, 445–451.CrossRefGoogle Scholar
  82. 82.
    Beral, V., Bull, D., Doll, D., Peto, R., Reeves, G. (2002). Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50 302 women with breast cancer and 96 973 women without the disease. Lancet 360, 187–195.CrossRefGoogle Scholar
  83. 83.
    Wang, Y., Jiang, J.-D., Xu, D., Li, Y., Qu, C., Holland, J. F., Pogo, B.G.-T. (2004). A mouse mammary tumor virus-like long terminal repeat superantigen in human breast cancer. Cancer Res 64, 4105–4111.CrossRefPubMedGoogle Scholar
  84. 84.
    Katz, E., Lareef, M. H., Rassa, J. C., Russo, J., Grande, S. M., et al. (2005). MMTV encodes an ITAM responsible for transformation of mammary epithelial cells in three-dimensional culture. Journal of Experimental Medicine 201, 431–439.CrossRefPubMedGoogle Scholar
  85. 85.
    Lawson, J. S., Tran, D. D., Carpenter, E., Ford, C. E., Rawlinson, W. D., Whitaker, N. J., Del-prado, W. (2006). Presence of mouse mammary tumour-like virus gene sequences may be associated with specific human breast cancer morphology. J Clin Pathol 59, 1287–1292.CrossRefPubMedGoogle Scholar
  86. 86.
    Moore, D. H., Charney, J., Kramarsky, B., Lasfragues, E., Sarkar, N. H., et al. (1971). Search for a human breast cancer virus. Nature 229, 611–615.CrossRefPubMedGoogle Scholar
  87. 87.
    Ford, C.E. (2004). Viruses and breast cancer. Ph.D. thesis, University of New South Wales, Australia.Google Scholar
  88. 88.
    NSW (2005). Report on breast feeding in NSW 2001: NSW Department of Health, Sydney. www.cphn.biochem.usyd.edu.au.
  89. 89.
    Stewart, T.H.M., Sage, R. D., Stewart, A.F.R., Cameron, D.W. (2000). Breast cancer incidence highest in the range of one species of house mouse Mus domesticus. Br J Cancer 82, 446–451.CrossRefPubMedGoogle Scholar
  90. 90.
    Pogo, B.G.T., Holland, J.F. (2005). MMTV and human breast cancer. Cancer Res 65, 1112.Google Scholar
  91. 91.
    Le Marchand, L., Haiman, C. A., Wilkens, L. R., Kolone, l L.N., Henderson, B.E. (2004). MTHFR polymorphisms, diet, HRT, and breast cancer risk: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev 13, 2071–2077.PubMedGoogle Scholar
  92. 92.
    Lawson, J. S., Guenzburg, W., Whitaker, N.J. (2006). Viruses and breast cancer. Review. Future Microbiol 1, 33–51.CrossRefPubMedGoogle Scholar
  93. 93.
    Vonka, V. (2000). Causality in medicine: the case of tumours and viruses. Philos Trans R Soc Lond 355, 1831–1841.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • James S. Lawson
    • 1
  1. 1.School of Public HealthUniversity of New South WalesSydneyAustralia

Personalised recommendations