Cancer Epidemiology pp 361-385

Part of the Methods in Molecular Biology book series (MIMB, volume 471) | Cite as

Single Nucleotide Polymorphisms in DNA Repair Genes and Prostate Cancer Risk

  • Jong Y. Park
  • Yifan Huang
  • Thomas A. Sellers

Summary

The specific causes of prostate cancer are not known. However, multiple etiologic factors, including genetic profile, metabolism of steroid hormones, nutrition, chronic inflammation, family history of prostate cancer, and environmental exposures are thought to play significant roles. Variations in exposure to these risk factors may explain interindividual differences in prostate cancer risk. However, regardless of the precise mechanism(s), a robust DNA repair capacity may mitigate any risks conferred by mutations from these risk factors. Numerous single nucleotide polymorphisms (SNPs) in DNA repair genes have been found, and studies of these SNPs and prostate cancer risk are critical to understanding the response of prostate cells to DNA damage. A few SNPs in DNA repair genes are associated with significantly increased risk of prostate cancer; however, in most cases, the effects are moderate and often depend upon interactions among the risk alleles of several genes in a pathway or with other environmental risk factors. This report reviews the published epidemiologic literature on the association of SNPs in genes involved in DNA repair pathways and prostate cancer risk.

Key words

DNA repair polymorphism environmental exposure prostate cancer cancer susceptibility 

References

  1. 1.
    American Cancer Society. (2007). Cancer Facts & Figures 2007. American Cancer Society, Atlanta, GA.Google Scholar
  2. 2.
    Hsing, A.W., L. Tsao, and S.S. Devesa. (2000). International trends and patterns of prostate cancer incidence and mortality. Int J Cancer 85, 60–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Crawford, E.D. (2003) Epidemiology of prostate cancer. Urology 62, 3–12.PubMedCrossRefGoogle Scholar
  4. 4.
    Noble, R.L. (1977). The development of prostatic adenocarcinoma in Nb rats following prolonged sex hormone administration. Cancer Res 37, 1929–33.PubMedGoogle Scholar
  5. 5.
    Henderson, B.E., R.K. Ross, M.C. Pike, and J.T. Casagrande (1982). Endogenous hormones as a major factor in human cancer. Cancer Res 42, 3232–9.PubMedGoogle Scholar
  6. 6.
    Friedberg, E.C. (2001). How nucleotide excision repair protects against cancer. Nat Rev Cancer 1, 22–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Mullaart, E., P.H. Lohman, F. Berends, and J. Vijg. (1990). DNA damage metabolism and aging. Mutat Res 237, 189–210.PubMedGoogle Scholar
  8. 8.
    Wood, R.D., M. Mitchell, J. Sgouros, and T. Lindahl. (2001). Human DNA repair genes. Science 291, 1284–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Goode, E.L., C.M. Ulrich, and J.D. Potter. (2002). Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11, 1513–30.PubMedGoogle Scholar
  10. 10.
    Hirata, H., Y. Hinoda, Y. Tanaka, N. Okayama, Y. Suehiro, K. Kawamoto, N. Kikuno, S. Majid, K. Vejdani, and R. Dahiya. (2007). Polymorphisms of DNA repair genes are risk factors for prostate cancer. Eur J Cancer 43, 231–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen, L., C.B. Ambrosone, J. Lee, T.A. Sellers, J. Pow-Sang, and J.Y. Park. (2006). Association between polymorphisms in the DNA repair genes XRCC1 and APE1, and the risk of prostate cancer in white and black Americans. J Urol. 175, 108–12; discussion 112.PubMedCrossRefGoogle Scholar
  12. 12.
    Ritchey, J.D., W.Y. Huang, A.P. Chokka-lingam, Y.T. Gao, J. Deng, P. Levine, F.Z. Stanczyk, and A.W. Hsing. (2005). Genetic variants of DNA repair genes and prostate cancer: a population-based study. Cancer Epidemiol Biomarkers Prev 14, 1703–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Rybicki, B.A., D.V. Conti, A. Moreira, M. Cicek, G. Casey, and J.S. Witte. (2004). DNA repair gene XRCC1 and XPD polymorphisms and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 13, 23–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Chen, L., A. Elahi, J. Pow-Sang, P. Lazarus, and J. Park. (2003). Association between polymorphism of human oxoguanine glyco-sylase 1 and risk of prostate cancer. J Urol. 170, 2471–4.PubMedCrossRefGoogle Scholar
  15. 15.
    van Gils, C.H., R.M. Bostick, M.C. Stern, and J.A. Taylor. (2002). Differences in base excision repair capacity may modulate the effect of dietary antioxidant intake on prostate cancer risk: an example of polymorphisms in the XRCC1 gene. Cancer Epidemiol Biomarkers Prev 11, 1279–84.PubMedGoogle Scholar
  16. 16.
    Xu, J., S.L. Zheng, A. Turner, S.D. Isaacs, K.E. Wiley, G.A. Hawkins, B.L. Chang, E.R. Bleecker, P.C. Walsh, D.A. Meyers, and W.B. Isaacs. (2002). Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Res 62, 2253–7.PubMedGoogle Scholar
  17. 17.
    Lockett, K.L., I.V. Snowhite, and J.J. Hu. (2005). Nucleotide-excision repair and prostate cancer risk. Cancer Lett 220, 125–35.PubMedCrossRefGoogle Scholar
  18. 18.
    Nock, N.L., M.S. Cicek, L. Li, X. Liu, B.A. Rybicki, A. Moreira, S.J. Plummer, G. Casey, and J.S. Witte. (2006). Polymorphisms in estrogen bioactivation, detoxification and oxidative DNA base excision repair genes and prostate cancer risk. Carcinogenesis. 27, 1842–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Xu, Z., L.X. Qian, L.X. Hua, X.R. Wang, J. Yang, W. Zhang, and H.F. Wu. (2007). Relationship between DNA repair gene XRCC1 Arg399Gln polymorphism and susceptibility to prostate cancer in the Han population in Jiangsu and Anhui. Zhonghua Nan Ke Xue 13, 327–31.PubMedGoogle Scholar
  20. 20.
    Liu, Z., L.E. Wang, S.S. Strom, M.R. Spitz, R.J. Babaian, J. DiGiovanni, and Q. Wei. (2003). Overexpression of hMTH in peripheral lymphocytes and risk of prostate cancer: a case-control analysis. Mol Carcinog 36, 123–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Strom, S.S., M.R. Spitz, Y. Yamamura, R.J. Babaian, P.T. Scardino, and Q. Wei (2001). Reduced expression of hMSH2 and hMLH1 and risk of prostate cancer: a case-control study. Prostate 47, 269–75.PubMedCrossRefGoogle Scholar
  22. 22.
    Chen, Y., J. Wang, M.M. Fraig, K. Henderson, N.K. Bissada, D.K. Watson, and C.W. Schweinfest. (2003). Alterations in PMS2, MSH2 and MLH1 expression in human prostate cancer. Int J Oncol 22, 1033–43.PubMedGoogle Scholar
  23. 23.
    Chen, Y., J. Wang, M.M. Fraig, J. Metcalf, W.R. Turner, N.K. Bissada, D.K. Watson, and C.W. Schweinfest. (2001). Defects of DNA mismatch repair in human prostate cancer. Cancer Res 61, 4112–21.PubMedGoogle Scholar
  24. 24.
    Hu, J.J., M.C. Hall, L. Grossman, M. Heday-ati, D.L. McCullough, K. Lohman, and L.D. Case. (2004). Deficient nucleotide excision repair capacity enhances human prostate cancer risk. Cancer Res 64, 1197–201.PubMedCrossRefGoogle Scholar
  25. 25.
    Nam, R.K., W.W. Zhang, M.A. Jewett, J. Trachtenberg, L.H. Klotz, M. Emami, L. Sugar, J. Sweet, A. Toi, and S.A. Narod. (2005). The use of genetic markers to determine risk for prostate cancer at prostate biopsy. Clin Cancer Res 11, 8391–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Goodman, M., R.M. Bostick, K.C. Ward, P.D. Terry, C.H. van Gils, J.A. Taylor, and J.S. Mandel. (2006). Lycopene intake and prostate cancer risk: effect modification by plasma antioxidants and the XRCC1 genotype. Nutr Cancer 55, 13–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Lockett, K.L., M.C. Hall, J. Xu, S.L. Zheng, M. Berwick, S.C. Chuang, P.E. Clark, S.D. Cramer, K. Lohman, and J.J. Hu. (2004). The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function. Cancer Res 64, 6344–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Hebbring, S.J., H. Fredriksson, K.A. White, C. Maier, C. Ewing, S.K. McDonnell, S.J. Jacobsen, J. Cerhan, D.J. Schaid, T. Ikonen, V. Autio, T.L. Tammela, K. Herkommer, T. Paiss, W. Vogel, M. Gielzak, J. Sauvageot, J. Schleutker, K.A. Cooney, W. Isaacs, and S.N. Thibodeau. (2006). Role of the nijmegen breakage syndrome 1 gene in familial and sporadic prostate cancer. Cancer Epidemiol Biomarkers Prev 15, 935–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Angele, S., A. Falconer, S.M. Edwards, T. Dork, M. Bremer, N. Moullan, B. Chapot, K. Muir, R. Houlston, A.R. Norman, S. Bullock, Q. Hope, J. Meitz, D. Dearnaley, A. Dowe, C. Southgate, A. Ardern-Jones, D.F. Easton, R.A. Eeles, and J. Hall. (2004). ATM polymorphisms as risk factors for prostate cancer development. Br J Cancer 91, 783–7.PubMedGoogle Scholar
  30. 30.
    Xu, Z., L.X. Hua, L.X. Qian, J. Yang, X.R. Wang, W. Zhang, and H.F. Wu. (2007). Relationship between XRCC1 polymorphisms and susceptibility to prostate cancer in men from Han, Southern China. Asian J Androl 9, 331–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Demple, B. and L. Harrison. (1994). Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63, 915–48.PubMedCrossRefGoogle Scholar
  32. 32.
    Robson, C.N., and I.D. Hickson. (1991). Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonucle-ase that corrects DNA repair and mutagen-esis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Res 19, 5519–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Wilson, D.M., 3rd, and D. Barsky. (2001). The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat Res 485, 283–307.PubMedGoogle Scholar
  34. 34.
    Boiteux, S. and J.P. Radicella. (2000). The human OGG1 gene: structure, functions, and its implication in the process of carcino-genesis. Arch Biochem Biophys 377, 1–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Sunaga, N., T. Kohno, K. Shinmura, T. Saitoh, T. Matsuda, R. Saito, and J. Yokota. (2001). OGG1 protein suppresses G:C→T: A mutation in a shuttle vector containing 8-hydroxyguanine in human cells. Carcino-genesis 22, 1355–62.CrossRefGoogle Scholar
  36. 36.
    Lindahl, T., and R.D. Wood. (1999). Quality control by DNA repair. Science. 286, 1897–905.PubMedCrossRefGoogle Scholar
  37. 37.
    Kohno, T., K. Shinmura, M. Tosaka, M. Tani, S.R. Kim, H. Sugimura, T. Nohmi, H. Kasai, and J. Yokota. (1998). Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene 16, 3219–25.PubMedCrossRefGoogle Scholar
  38. 38.
    National Center for Biotechnology Information (2006). SNP500 Cancer. Cancer Genome Anatomy Project. Cited in http://snp500cancer.nci.nih.gov.
  39. 39.
    Shinmura, K., T. Kohno, H. Kasai, K. Koda, H. Sugimura, and J. Yokota. (1998). Infrequent mutations of the hOGG1 gene, that is involved in the excision of 8-hydroxygua-nine in damaged DNA, in human gastric cancer. Jpn. J. Cancer Res. 89, 825–8.PubMedGoogle Scholar
  40. 40.
    Janssen, K., K. Schlink, W. Gotte, B. Hip-pler, B. Kaina, and F. Oesch. (2001). DNA repair activity of 8-oxoguanine DNA gly-cosylase 1 (OGG1) in human lymphocytes is not dependent on genetic polymorphism Ser326/Cys326. Mutat Res 486, 207–16.PubMedGoogle Scholar
  41. 41.
    Dherin, C., J.P. Radicella, M. Dizdaroglu, and S. Boiteux. (1999). Excision of oxida-tively damaged DNA bases by the human alpha-hOgg1 protein and the polymorphic alpha-hOgg1(Ser326Cys) protein which is frequently found in human populations. Nucleic Acids Res 27, 4001–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Hardie, L.J., J.A. Briggs, L.A. Davidson, J.M. Allan, R.F. King, G.I. Williams, and C.P. Wild. (2000). The effect of hOGG1 and glutathione peroxidase I genotypes and 3p chromosomal loss on 8-hydroxydeoxy-guanosine levels in lung cancer. Carcinogen-esis 21, 167–72.CrossRefGoogle Scholar
  43. 43.
    Park, Y.J., E.Y. Choi, J.Y. Choi, J.G. Park, H.J. You, and M.H. Chung. (2001). Genetic changes of hOGG1 and the activity of oh8Gua glycosylase in colon cancer. Eur J Cancer 37, 340–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Kondo, S., S. Toyokuni, T. Tanaka, H. Hiai, H. Onodera, H. Kasai, and M. Imamura. (2000). Overexpression of the hOGG1 gene and high 8-hydroxy-2'-deoxyguanosine (8-OHdG) lyase activity in human colorectal carcinoma: regulation mechanism of the 8-OHdG level in DNA. Clin Cancer Res 6, 1394–400.PubMedGoogle Scholar
  45. 45.
    Blons, H., J.P. Radicella, O. Laccourreye, D. Brasnu, P. Beaune, S. Boiteux, and P. Laurent-Puig. (1999). Frequent allelic loss at chromosome 3p distinct from genetic alterations of the 8-oxoguanine DNA glyco-sylase 1 gene in head and neck cancer. Mol Carcinog 26, 254–60.PubMedCrossRefGoogle Scholar
  46. 46.
    Hu, Y.C. and S.A. Ahrendt. (2005). hOGG1 Ser326Cys polymorphism and G: C-to-T: A mutations: no evidence for a role in tobacco-related non small cell lung cancer. Int J Cancer 114, 387–93.PubMedCrossRefGoogle Scholar
  47. 47.
    Tarng, D.C., T.J. Tsai, W.T. Chen, T.Y. Liu, and Y.H. Wei. (2001). Effect of human OGG1 1245C—>G gene polymorphism on 8-hydroxy-2'-deoxyguanosine levels of leukocyte DNA among patients undergoing chronic hemodialysis. J Am Soc Nephrol 12, 2338–47.PubMedGoogle Scholar
  48. 48.
    Chen, S.K., W.A. Hsieh, M.H. Tsai, C.C. Chen, A.I. Hong, Y.H. Wei, and W.P. Chang. (2003). Age-associated decrease of oxidative repair enzymes, human 8-oxogua-nine DNA glycosylases (hOgg1), in human aging. J Radiat Res 44, 31–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Yamane, A., T. Kohno, K. Ito, N. Sunaga, K. Aoki, K. Yoshimura, H. Murakami, Y. Nojima, and J. Yokota. (2004). Differential ability of polymorphic OGG1 proteins to suppress mutagenesis induced by 8-hydrox-yguanine in human cell in vivo. Carcinogen-esis 25, 1689–94.CrossRefGoogle Scholar
  50. 50.
    Xing, D.Y., W. Tan, N. Song, and D.X. Lin. (2001). Ser326Cys polymorphism in hOGG1 gene and risk of esophageal cancer in a Chinese population. Int J Cancer 95, 140–3.PubMedCrossRefGoogle Scholar
  51. 51.
    Sugimura, H., T. Kohno, K. Wakai, K. Nagura, K. Genka, H. Igarashi, B.J. Morris, S. Baba, Y. Ohno, C. Gao, Z. Li, J. Wang, T. Takezaki, K. Tajima, T. Varga, T. Sawaguchi, J.K. Lum, J.J. Martinson, S. Tsugane, T. Iwamasa, K. Shinmura, and J. Yokota. (1999). hOGG1 Ser326Cys polymorphism and lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev 8, 669–74.PubMedGoogle Scholar
  52. 52.
    Wikman, H., A. Risch, F. Klimek, P. Schmezer, B. Spiegelhalder, H. Dienemann, K. Kayser, V. Schulz, P. Drings, and H. Bar-tsch (2000). hOGG1 polymorphism and loss of heterozygosity (LOH): significance for lung cancer susceptibility in a Caucasian population. Int J Cancer 88, 932–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Ito, H., N. Hamajima, T. Takezaki, K. Mat-suo, K. Tajima, S. Hatooka, T. Mitsudomi, M. Suyama, S. Sato, and R. Ueda. (2002). A limited association of OGG1 Ser326Cys polymorphism for adenocarcinoma of the lung. J Epidemiol 12, 258–65.PubMedGoogle Scholar
  54. 54.
    Le Marchand, L., T. Donlon, A. Lum-Jones, A. Seifried, and L.R. Wilkens. (2002). Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk. Cancer Epidemiol Biomarkers Prev 11, 409–12.PubMedGoogle Scholar
  55. 55.
    Sunaga, N., T. Kohno, N. Yanagitani, H. Sugimura, H. Kunitoh, T. Tamura, Y. Takei, S. Tsuchiya, R. Saito, and J. Yokota. (2002). Contribution of the NQO1 and GSTT1 polymorphisms to lung adenocarcinoma susceptibility. Cancer Epidemiol Biomarkers Prev 11, 730–8.PubMedGoogle Scholar
  56. 56.
    Lan, Q., J.L. Mumford, M. Shen, D.M. Demarini, M.R. Bonner, X. He, M. Yeager, R. Welch, S. Chanock, L. Tian, R.S. Chapman, T. Zheng, P. Keohavong, N. Capo-raso, and N. Rothman. (2004). Oxidative damage-related genes AKR1C3 and OGG1 modulate risks for lung cancer due to exposure to PAH-rich coal combustion emissions. Carcinogenesis 25, 2177–81.PubMedCrossRefGoogle Scholar
  57. 57.
    Park, J., L. Chen, M.S. Tockman, A. Elahi, and P. Lazarus. (2004). The human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) DNA repair enzyme and its association with lung cancer risk. Pharmacogenetics 14, 103–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Hung, R.J., P. Brennan, F. Canzian, N. Szeszenia-Dabrowska, D. Zaridze, J. Lis-sowska, P. Rudnai, E. Fabianova, D. Mates, L. Foretova, V. Janout, V. Bencko, A. Chabrier, S. Borel, J. Hall, and P. Boffetta. (2005). Large-scale investigation of base excision repair genetic polymorphisms and lung cancer risk in a multicenter study. J Natl Cancer Inst 97, 567–76.PubMedCrossRefGoogle Scholar
  59. 59.
    Cho, E.Y., A. Hildesheim, C.J. Chen, M.M. Hsu, I.H. Chen, B.F. Mittl, P.H. Levine, M.Y. Liu, J.Y. Chen, L.A. Brinton, Y.J. Cheng, and C.S. Yang. (2003). Nasopha-ryngeal carcinoma and genetic polymorphisms of DNA repair enzymes XRCC1 and hOGG1. Cancer Epidemiol Biomarkers Prev 12, 1100–4.PubMedGoogle Scholar
  60. 60.
    Hao, B., H. Wang, K. Zhou, Y. Li, X. Chen, G. Zhou, Y. Zhu, X. Miao, W. Tan, Q. Wei, D. Lin, and F. He. (2004). Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma. Cancer Res 64, 4378–84.PubMedCrossRefGoogle Scholar
  61. 61.
    Elahi, A., Z. Zheng, J. Park, K. Eyring, T. McCaffrey, and P. Lazarus. (2002). The human OGG1 DNA repair enzyme and its association with orolaryngeal cancer risk. Carcinogenesis 23, 1229–34.PubMedCrossRefGoogle Scholar
  62. 62.
    Kim, J.I., Y.J. Park, K.H. Kim, B.J. Song, M.S. Lee, C.N. Kim, and S.H. Chang. (2003). hOGG1 Ser326Cys polymorphism modifies the significance of the environmental risk factor for colon cancer. World J Gas-troenterol 9, 956–60.Google Scholar
  63. 63.
    Wang, Y., M.R. Spitz, Y. Zhu, Q. Dong, S. Shete, and X. Wu. (2003). From genotype to phenotype: correlating XRCC1 polymorphisms with mutagen sensitivity. DNA Rep 2, 901–8.CrossRefGoogle Scholar
  64. 64.
    Matullo, G., S. Guarrera, S. Carturan, M. Peluso, C. Malaveille, L. Davico, A. Piazza, and P. Vineis. (2001). DNA repair gene polymorphisms, bulky DNA adducts in white blood cells and bladder cancer in a case-control study. Int J Cancer 92(4), 562–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Hu, J.J., T.R. Smith, M.S. Miller, H.W. Mohrenweiser, A. Golden, and L.D. Case. (2001). Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity. Carcinogenesis 22, 917–22.PubMedCrossRefGoogle Scholar
  66. 66.
    Hu, J.J., T.R. Smith, M.S. Miller, K. Lohman, and L.D. Case. (2002). Genetic regulation of ionizing radiation sensitivity and breast cancer risk. Environ Mol Muta-gen 39, 208–15.CrossRefGoogle Scholar
  67. 67.
    Lunn, R.M., D.A. Bell, J.L. Mohler, and J.A. Taylor. (1999). Prostate cancer risk and polymorphism in 17 hydroxylase (CYP17) and steroid reductase (SRD5A2). Carcino-genesis 20, 1727–31.CrossRefGoogle Scholar
  68. 68.
    Lunn, R.M., R.G. Langlois, L.L. Hsieh, C.L. Thompson, and D.A. Bell. (1999). XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res 59, 2557–61.PubMedGoogle Scholar
  69. 69.
    Matullo, G., D. Palli, M. Peluso, S. Guar-rera, S. Carturan, E. Celentano, V. Krogh, A. Munnia, R. Tumino, S. Polidoro, A. Piazza, and P. Vineis. (2001). XRCC1, XRCC3, XPD gene polymorphisms, smoking and (32)P-DNA adducts in a sample of healthy subjects. Carcinogenesis 22, 1437–45.PubMedCrossRefGoogle Scholar
  70. 70.
    Fan, J., M. Otterlei, H.K. Wong, A.E. Tomkinson, and D.M. Wilson, 3rd. (2004). XRCC1 co-localizes and physically interacts with PCNA. Nucleic Acids Res 32, 2193–201.PubMedCrossRefGoogle Scholar
  71. 71.
    Tuimala, J., G. Szekely, S. Gundy, A. Hir-vonen, and H. Norppa. (2002). Genetic polymorphisms of DNA repair and xenobi-otic-metabolizing enzymes: role in mutagen sensitivity. Carcinogenesis 23, 1003–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Xi, T., I.M. Jones, and H.W. Mohrenweiser. (2004). Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function. Genomics 83, 970–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Hadi, M.Z., M.A. Coleman, K. Fidelis, H.W. Mohrenweiser, and D.M. Wilson, 3rd. (2000). Functional characterization of Ape1 variants identified in the human population. Nucleic Acids Res 28, 3871–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Dantzer, F., V. Schreiber, C. Niedergang, C. Trucco, E. Flatter, G. De La Rubia, J. Oliver, V. Rolli, J. Menissier-de Murcia, and G. de Murcia. (1999). Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie 81, 69–75.PubMedCrossRefGoogle Scholar
  75. 75.
    Wieler, S., J.P. Gagne, H. Vaziri, G.G. Poir-ier, and S. Benchimol. (2003). Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J Biol Chem 278, 18914–21.PubMedCrossRefGoogle Scholar
  76. 76.
    Caldecott, K.W., C.K. McKeown, J.D. Tucker, S. Ljungquist, and L.H. Thompson. (1994). An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol Cell Biol. 14, 68–76.PubMedGoogle Scholar
  77. 77.
    Sancar, G.B., W. Siede, and A.A. van Zee-land. (1996). Repair and processing of DNA damage: a summary of recent progress. Mutat Res 362, 127–46.PubMedGoogle Scholar
  78. 78.
    Yu, M.W., S.Y. Yang, I.J. Pan, C.L. Lin, C.J. Liu, Y.F. Liaw, S.M. Lin, P.J. Chen, S.D. Lee, and C.J. Chen. (2003). Polymorphisms in XRCC1 and glutathione S-transferase genes and hepatitis B-related hepatocellular carcinoma. J Natl Cancer Inst 95, 1485–8.PubMedGoogle Scholar
  79. 79.
    Spitz, M.R., X. Wu, Y. Wang, L.E. Wang, S. Shete, C.I. Amos, Z. Guo, L. Lei, H. Mohrenweiser, and Q. Wei. (2001). Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Res 61, 1354–7.PubMedGoogle Scholar
  80. 80.
    Baccarelli, A., D. Calista, P. Minghetti, B. Marinelli, B. Albetti, T. Tseng, M. Hedayati, L. Grossman, G. Landi, J.P. Struewing, and M.T. Landi. (2004). XPD gene polymorphism and host characteristics in the association with cutaneous malignant melanoma risk. Br J Cancer 90, 497–502.PubMedCrossRefGoogle Scholar
  81. 81.
    Benhamou, S., and A. Sarasin. (2005). ERCC2 /XPD gene polymorphisms and lung cancer: a HuGE review. Am J Epidemiol 161, 1–14.PubMedCrossRefGoogle Scholar
  82. 82.
    Hou, S.M., S. Falt, S. Angelini, K. Yang, F. Nyberg, B. Lambert, and K. Hemminki. (2002). The XPD variant alleles are associated with increased aromatic DNA adduct level and lung cancer risk. Carcinogenesis 23, 599–603.PubMedCrossRefGoogle Scholar
  83. 83.
    Lunn, R.M., K.J. Helzlsouer, R. Parshad, D.M. Umbach, E.L. Harris, K.K. Sanford, and D.A. Bell. (2000). XPD polymorphisms: effects on DNA repair proficiency. Carcino-genesis 21, 551–5.CrossRefGoogle Scholar
  84. 84.
    Duell, E.J., J.K. Wiencke, T.J. Cheng, A. Varkonyi, Z.F. Zuo, T.D. Ashok, E.J. Mark, J.C. Wain, D.C. Christiani, and K.T. Kelsey. (2000). Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononu-clear cells. Carcinogenesis 21, 965–71.PubMedCrossRefGoogle Scholar
  85. 85.
    Kiyohara, C., and K. Yoshimasu. (2007). Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis. Int J Med Sci 4, 59–71.PubMedGoogle Scholar
  86. 86.
    Huang, W.Y., S.I. Berndt, D. Kang, N. Chatterjee, S.J. Chanock, M. Yeager, R. Welch, R.S. Bresalier, J.L. Weissfeld, and R.B. Hayes. (2006). Nucleotide excision repair gene polymorphisms and risk of advanced colorectal adenoma: XPC polymorphisms modify smoking-related risk. Cancer Epidemiol Biomarkers Prev 15, 306–11.PubMedCrossRefGoogle Scholar
  87. 87.
    Mohrenweiser, H.W., D.M. Wilson, 3rd, and I.M. Jones. (2003). Challenges and complexities in estimating both the functional impact and the disease risk associated with the extensive genetic variation in human DNA repair genes. Mutat Res 526, 93–125.PubMedGoogle Scholar
  88. 88.
    Araujo, F.D., A.J. Pierce, J.M. Stark, and M. Jasin. (2002). Variant XRCC3 implicated in cancer is functional in homology-directed repair of double-strand breaks. Oncogene 21, 4176–80.PubMedCrossRefGoogle Scholar
  89. 89.
    Nonoyama, S., and H.D. Ochs. (1996). Immune deficiency in SCID mice. Int Rev Immunol 13, 289–300.PubMedCrossRefGoogle Scholar
  90. 90.
    Nicolas, N., D. Moshous, M. Cavazzana-Calvo, D. Papadopoulo, R. de Chasseval, F. Le Deist, A. Fischer, and J.P. de Vil-larta. (1998). A human severe combined immunodeficiency (SCID) condition with increased sensitivity to ionizing radiations and impaired V(D)J rearrangements defines a new DNA recombination/repair deficiency. J Exp Med 188, 627–34.PubMedCrossRefGoogle Scholar
  91. 91.
    Dip, R. and H. Naegeli. (2005). More than just strand breaks: the recognition of structural DNA discontinuities by DNA-depend-ent protein kinase catalytic subunit. FASEB J 19, 704–15.PubMedCrossRefGoogle Scholar
  92. 92.
    Sipley, J.D., J.C. Menninger, K.O. Hartley, D.C. Ward, S.P. Jackson, and C.W. Anderson. (1995). Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8. Proc Natl Acad Sci U S A 92, 7515–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Zhang, Y., J. Zhou, and C.U. Lim. (2006). The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control. Cell Res 16, 45–54.PubMedCrossRefGoogle Scholar
  94. 94.
    Medina, P.P., S.A. Ahrendt, M. Pollan, P. Fernandez, D. Sidransky, and M. Sanchez-Cespedes. (2003). Screening of homologous recombination gene polymorphisms in lung cancer patients reveals an association of the NBS1–185Gln variant and p53 gene mutations. Cancer Epidemiol Biomarkers Prev 12, 699–704.PubMedGoogle Scholar
  95. 95.
    Margison, G.P., A.C. Povey, B. Kaina, and M.F. Santibanez Koref. (2003). Variability and regulation of O6-alkylguanine-DNA alkyltransferase. Carcinogenesis 24, 625–35.PubMedCrossRefGoogle Scholar
  96. 96.
    Inoue, R., M. Abe, Y. Nakabeppu, M. Sekiguchi, T. Mori, and T. Suzuki. (2000). Characterization of human polymorphic DNA repair methyltransferase. Pharmaco-genetics 10, 59–66.Google Scholar
  97. 97.
    Margison, G.P., J. Heighway, S. Pearson, G. McGown, M.R. Thorncroft, A.J. Watson, K.L. Harrison, S.J. Lewis, K. Rohde, P.V. Barber, P. O'Donnell, A.C. Povey, and M.F. Santibanez-Koref. (2005). Quantitative trait locus analysis reveals two intragenic sites that influence O6-alkylguanine-DNA alkyltrans-ferase activity in peripheral blood mononu-clear cells. Carcinogenesis 26, 1473–80.PubMedCrossRefGoogle Scholar
  98. 98.
    Matsuoka, S., G. Rotman, A. Ogawa, Y. Shiloh, K. Tamai, and S.J. Elledge. (2000). Ataxia telangiectasia-mutated phosphor-ylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 97, 10389–94.PubMedCrossRefGoogle Scholar
  99. 99.
    Kim, J.H., H. Kim, K.Y. Lee, K.H. Choe, J.S. Ryu, H.I. Yoon, S.W. Sung, K.Y. Yoo, and Y.C. Hong. (2006). Genetic polymorphisms of ataxia telangiectasia mutated affect lung cancer risk. Hum Mol Genet 15, 1181–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Koren, M., G. Kimmel, E. Ben-Asher, I. Gal, M.Z. Papa, J.S. Beckmann, D. Lancet, R. Shamir, and E. Friedman. (2006). ATM hap-lotypes and breast cancer risk in Jewish high-risk women. Br J Cancer 94, 1537–43.PubMedCrossRefGoogle Scholar
  101. 101.
    Lee, K.M., J.Y. Choi, S.K. Park, H.W. Chung, B. Ahn, K.Y. Yoo, W. Han, D.Y. Noh, S.H. Ahn, H. Kim, Q. Wei, and D. Kang. (2005). Genetic polymorphisms of ataxia telangiectasia mutated and breast cancer risk. Cancer Epidemiol Biomarkers Prev 14, 821–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Audebert, M., J.P. Radicella, and M. Dizdaro-glu. (2000). Effect of single mutations in the OGG1 gene found in human tumors on the substrate specificity of the Ogg1 protein. Nucleic Acids Res 28, 2672–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Chen, C., N.S. Weiss, F.Z. Stanczyk, S.K. Lewis, D. DiTommaso, R. Etzioni, M.J. Bar-nett, and G.E. Goodman. (2003). Endogenous sex hormones and prostate cancer risk: a case-control study nested within the Carotene and Retinol Efficacy Trial. Cancer Epidemiol Biomarkers Prev 12, 1410–6.PubMedGoogle Scholar
  104. 104.
    Peng, T., H.M. Shen, Z.M. Liu, L.N. Yan, M.H. Peng, L.Q. Li, R.X. Liang, Z.L. Wei, B. Halliwell, and C.N. Ong. (2003). Oxidative DNA damage in peripheral leukocytes and its association with expression and polymorphisms of hOGG1: a study of adolescents in a high risk region for hepatocellular carcinoma in China. World J Gastroenterol 9, 2186–93.PubMedGoogle Scholar
  105. 105.
    Khan, S.G., E.J. Metter, R.E. Tarone, V.A. Bohr, L. Grossman, M. Hedayati, S.J. Bale, S. Emmert, and K.H. Kraemer. (2000). A new xeroderma pigmentosum group C poly(AT) insertion/deletion polymorphism. Carcinogenesis 21, 1821–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Wang, C.Y., R.F. Jones, M. Debiec-Rychter, G. Soos, and G.P. Haas. (2002). Correlation of the genotypes for N-acetyltransferases 1 and 2 with double bladder and prostate cancers in a case-comparison study. Anticancer Res 22, 3529–35.PubMedGoogle Scholar

Copyright information

© Humana Press a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jong Y. Park
    • 1
  • Yifan Huang
    • 1
  • Thomas A. Sellers
    • 1
  1. 1.Division of Cancer Prevention and ControlH. Lee Moffitt Cancer Center and Research InstituteTampaUSA

Personalised recommendations