Lentiviral Vector Gene Transfer into Human T Cells

  • Els Verhoeyen
  • Caroline Costa
  • Francois-Loic Cosset
Part of the Methods In Molecular Biology™ book series (MIMB, volume 506)

Summary

Efficient gene transfer into T lymphocytes may allow the treatment of several genetic dysfunctions of the hematopoietic system, such as severe combined immunodeficiency, and the development of novel therapeutic strategies for diseases such as cancers and acquired diseases such as AIDS. Lentiviral vectors can transduce many types of nonproliferating cells, with the exception of some particular quiescent cell types such as resting T cells. Completion of reverse transcription, nuclear import, and subsequent integration of the lentivirus genome do not occur in these cells unless they are activated via the T-cell receptor (TCR) and/or by cytokines inducing resting T cells to enter in G1b phase of the cell cycle. In T-cell-based gene therapy trials performed to date, cells have been preactivated via their cognate antigen receptor (TCR). However, TCR stimulation shifts the T cells from naïve to memory phenotype and leads to skewing of the T-cell population. Since, especially the naïve T cells will provide a long-lasting immune reconstitution to patients these are the cells that need to be transduced for effective gene therapy. Now it is clear that use of the survival cytokines, IL-2 or IL-7, allows an efficient lentiviral vector gene transfer and could preserve a functional T-cell repertoire while maintaining an appropriate proportion of naïve and memory T cells. In this protocol we give details on lentiviral transduction of T cells using TCR-stimulation or rIL-7 prestimulation. In addition, we describe the use of a new generation of lentiviral vectors displaying T-cell-activating ligands at their surface for targeted T-cell gene transfer.

Key words

IL-7 Lentiviral vector Gene therapy TCR Human T-cell 

References

  1. 1.
    Blaese, R.M., Culver, K.W., Miller, A.D., Carster, C.S., Fleisher, T., Clerci, M., Shearer, G., Chang, L., Chiang, Y., Tolstoshev, P., Greenblatt, J.J., Rosenberg, S.A., Klein, H., Berger, M., Mullen, C.A., Ramsey, W.J., Muul, L., Morgan, R.A., Anderson, W. F. (1995). T-lymphocyte directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270, 275–280CrossRefGoogle Scholar
  2. 2.
    Bordignon, C., Notaranglo, L.D., Nobili, N., Ferrari, G., Casorati, G., Panina, P., Mazzo-lana, E., Maggioni, D., Rossi, C., Ser vida, P., Ugazio, A.G., Mavillo, F. (1995). Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 270, 470–475CrossRefPubMedGoogle Scholar
  3. 3.
    Mitsuyasu, R.T., Anton, P.A., Deeks, S.G., Scadden, D.T., Connick, E., Downs, M.T., Bakker, A., Roberts, M.R., June, C.H., Jalali, S., Lin, A.A., Pennathur-Das, R., Hege, K.M. (2000). Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood 96 (3), 785–93PubMedGoogle Scholar
  4. 4.
    Deeks, S.G., Wagner, B., Anton, P.A., Mit-suyasu, R.T., Scadden, D.T., Huang, C., Macken, C., Richman, D.D., Christopher-son, C., June, C.H., Lazar, R., Broad, D.F., Jalali, S., Hege, K.M. (2002). A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther 5 (6), 788–797CrossRefPubMedGoogle Scholar
  5. 5.
    Recchia, A., Bonini, C., Magnani, Z., Urbinati, F., Sartori, D., Muraro, S., Tagliafico, E., Bondanza, A., Stanghellini, M.T., Bernardi, M., Pescarollo, A., Ciceri, F., Bordignon, C., Mavilio, F. (2006). Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells. Proc Natl Acad Sci U S A 103 (5), 1457–1462CrossRefPubMedGoogle Scholar
  6. 6.
    Buchschacher, G.L., Wong-Staal, F. (2002). Approaches to gene therapy for human immunodeficiency virus infection. Hum Gene Ther 12, 1013–1019CrossRefGoogle Scholar
  7. 7.
    Hacein-Bey-Abina, S., Le Deist, F., Carlier, F., Bouneaud, C., Hue, C., De Villartay, J.P., Thrasher, A.J., Wulffraat, N., Sorensen, R., Dupuis-Girod, S., Fischer, A., Davies, E.G., Kuis, W., Leiva, L., Cavazzana-Calvo, M. (2002). Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med 346, 1185–1193CrossRefPubMedGoogle Scholar
  8. 8.
    Cavazzana-Calvo, M., Fischer, A. (2004). Efficacy of gene therapy for SCID is being confirmed. Lancet 364 (9452), 2155–2156CrossRefPubMedGoogle Scholar
  9. 9.
    Aiuti, A., Slavin, S., Aker, M., Ficara, F., Deola, S., Mortellaro, A., Morecki, S., Andolfi, G., Tabucchi, A., Carlucci, F., Marinello, E., Cattaneo, F., Vai, S., Ser vida, P., Miniero, R., Roncarolo, M.G., Bordignon, C. (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science, 296 (5577), 2410–2413CrossRefPubMedGoogle Scholar
  10. 10.
    Powell, J.S., Ragni, M.V., White, G.C. 2nd, Lusher, J.M., Hillman-Wiseman, C., Moon, T.E., Cole, V., Ramanathan-Girish, S., Roehl, H., Sajjadi, N., Jolly, D.J., Hurst, D. (2003). Phase 1 trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion. Blood 102 (6), 2038–2045CrossRefPubMedGoogle Scholar
  11. 11.
    Ott, M.G., Schmidt, M., Schwarzwaelder, K., Stein, S., Siler, U., Koehl, U., Glimm, H., Kuhlcke, K., Schilz, A., Kunkel, H., Naundorf, S., Brinkmann, A., Deichmann, A., Fischer, M., Ball, C., Pilz, I., Dunbar, C., Du, Y., Jenkins, N.A., Copeland, N.G., Luthi, U., Hassan, M., Thrasher, A.J., Hoelzer, D., von Kalle, C., Seger, R., Grez, M. (2006). Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12 (4), 401–409CrossRefPubMedGoogle Scholar
  12. 12.
    Tjonnfjord, G.E., Steen, R., Veiby, O.P., Friedrich, W., Egeland, T. (1994). Evidence for engraftment of donor-type multipotent CD34— cells in a patient with selective T-lym-phocyte reconstitution after bone marrow transplantation for B-SCID. Blood 84 (10), 3584–3589PubMedGoogle Scholar
  13. 13.
    Hirschhorn, R., Yang, D.R., Puck, J.M., Huie, M.L., Jiang, C.K., Kurlandsky, L.E. (1996). Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adeno-sine deaminase deficiency. Nat Genet 13 (3), 290–295CrossRefPubMedGoogle Scholar
  14. 14.
    Stephan, V., Wahn, V., Le Deist, F., Dirk-sen, U., Broker, B., Muller-Fleckenstein, I., Horneff, G., Schroten, H., Fischer, A., de Saint Basile, G. (1996). A typical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. N Engl J Med 335 (21), 1563 –1567CrossRefPubMedGoogle Scholar
  15. 15.
    Aiuti, A., Vai, S., Mortellaro, A., Casorati, G., Ficara, F., Andolfi, G., Ferrari, G., Tabucchi, A., Carlucci, F., Ochs, H.D., Notarangelo, L.D., Roncarolo, M.G., Bordignon, C. (2002) Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nat Med 8 (5), 423–425CrossRefPubMedGoogle Scholar
  16. 16.
    Dupre, L., Trifari, S., Follenzi, A., Marangoni, F., Lain de Lera, T., Bernad, A., Martino, S., Tsuchiya, S., Bordignon, C., Naldini, L., Aiuti, A., Roncarolo, M.G. (2004). Lentiviral vector-mediated gene transfer in T cells from Wiskott—Aldrich syndrome patients leads to functional correction. Mol Ther 10 (5), 903–915CrossRefPubMedGoogle Scholar
  17. 17.
    Szydlo, R., Goldman, J.M., Klein, J.P., Gale, R.P., Ash, R.C., Bach, F.H., Bradley, B.A., Casper, J.T., Flomenberg, N., Gajewski, J.L., Gluckman, E., Henslee-Downey, P.J., Hows, J.M., Jacobsen, N., Kolb, H.J., Lowenberg, B., Masaoka, T., Rowlings, P.A., Sondel, P.M., van Bekkum, D.W., van Rood, J.J., Vowels, M.R., Zhang, M.J., Horowitz, M.M. (1997). Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J Clin Oncol 15 (5), 1767–1777PubMedGoogle Scholar
  18. 18.
    Vigorito, A.C., Azevedo, W.M., Marques, J.F., Azevedo, A.M., Eid, K.A., Aranha, F.J., Lorand-Metze, I., Oliveira, G.B., Correa, M.E., Reis, A.R., Miranda, E.C., de Souza, C.A. (1998). A randomised, prospective comparison of allogeneic bone marrow and peripheral blood progenitor cell transplantation in the treatment of haematological malignancies. Bone Marrow Transplant 22 (12), 1145–1151CrossRefPubMedGoogle Scholar
  19. 19.
    Horowitz, M.M., Gale, R.P., Sondel, P.M., Goldman, J.M., Kersey, J., Kolb, H.J., Rimm, A.A., Ringden, O., Rozman, C., Speck, B. (1990). Graft-versus-leukemia reactions after bone marrow transplantation. Blood, 75 (3), 555–562PubMedGoogle Scholar
  20. 20.
    Tiberghien, P., Ferrand, C., Lioure, B., Milpied, N., Angonin, R., Deconinck, E., Certoux, J.M., Robinet, E., Saas, P., Petracca, B., Juttner, C., Reynolds, C.W., Longo, D.L., Herve, P., Cahn, J.Y. (2001) Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft. Blood 97 (1), 63–72CrossRefPubMedGoogle Scholar
  21. 21.
    Bonini, C., Ferrari, G., Verzeletti, S., Servida, P., Zappone, E., Ruggieri, L., Ponzoni, M., Rossini, S., Mavilio, F., Traversari, C., Bordi-gnon, C. (1997). HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276 (5319), 1719–1724CrossRefPubMedGoogle Scholar
  22. 22.
    Bondanza, A., Valtolina, V., Magnani, Z., Ponzoni, M., Fleischhauer, K., Bonyhadi, M., Traversari, C., Sanvito, F., Toma, S., Radriz-zani, M., La Seta-Catamancio, S., Ciceri, F., Bordignon, C., Bonini, C. (2006). Suicide gene therapy of graft-versus-host disease induced by central memory human T lymphocytes. Blood 107 (5), 1828–1836CrossRefPubMedGoogle Scholar
  23. 23.
    Chun, T. W., Stuyver, L., Mizell, S.B., Ehler, L.A., Mican, J.A., Baseler, M., Lloyd, A.L., Nowak, M.A., Fauci, A.S. (1997). Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci U S A. 94, 13193–13197CrossRefPubMedGoogle Scholar
  24. 24.
    Finzi, D., Hermankova, M., Pierson, T., Car-ruth, L.M., Buck, C., Chaisson, R.E., Quinn, T.C., Chadwick, K., Margolick, J., Brook-meyer, R., Gallant, J., Markowitz, M., Ho, D.D., Richman, D.D., Siliciano, R.F. (1997). Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300CrossRefPubMedGoogle Scholar
  25. 25.
    Woffendin, C., Ranga, U., Yang, Z., Xu, L., Nabel, G.J. (1996). Expression of a protective gene-prolongs survival of T cells in human immunodeficiency virus-infected patients. Proc Natl Acad Sci U S A93, 2889–2894CrossRefPubMedGoogle Scholar
  26. 26.
    Ranga, U., Woffendin, C., Verma, S., Xu, L., June, C.H., Bishop, D.K., Nabel, G.J. (1998). Enhanced T cell engraftment after retroviral delivery of an antiviral gene in HIV-infected individuals. Proc Natl Acad Sci U S A95, 1201–1206CrossRefPubMedGoogle Scholar
  27. 27.
    Braun, S.E., Wong, F.E., Connole, M., Qiu, G., Lee, L., Gillis, J., Lu, X., Humeau, L., Sle-pushkin, V., Binder, G.K., Dropulic, B., Johnson, R.P. (2005). Inhibition of simian/human immunodeficiency virus replication in CD4+ T cells derived from lentiviral-transduced CD34+ hematopoietic cells. Mol Ther 12 (6), 1157–1167CrossRefPubMedGoogle Scholar
  28. 28.
    Humeau, L.M., Binder, G.K., Lu, X., Slepush-kin, V., Merling, R., Echeagaray, P., Pereira, M., Slepushkina, T., Barnett, S., Dropulic, L.K., Carroll, R., Levine, B.L., June, C.H., Dropulic, B. (2004). Efficient lentiviral vector-mediated control of HIV-1 replication in CD4 lymphocytes from diverse HIV+ infected patients grouped according to CD4 count and viral load. Mol Ther 9 (6), 902–913CrossRefPubMedGoogle Scholar
  29. 29.
    Levine, B.L., Humeau, L.M., Boyer, J., Mac-Gregor, R.R., Rebello, T., Lu, X., Binder, G.K., Slepushkin, V., Lemiale, F., Mascola, J.R., Bushman, F.D., Dropulic, B., June, C.H. (2006). Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci U S A 103 (46), 17372–17377CrossRefPubMedGoogle Scholar
  30. 30.
    Hildinger, M., Dittmar, M.T., Schult-Diet-rich, P., Fehse, B., Schnierle, B.S., Thaler, S., Stiegler, G., Welker, R., von Laer, D. (2001). Membrane-anchored peptide inhibits human immunodeficiency virus entry. J. Virol 75, 3038–3042CrossRefPubMedGoogle Scholar
  31. 31.
    Egelhofer, M., Brandenburg, G., Martinius, H., Schult-Dietrich, P., Melikyan, G., Kunert, R., Baum, C., Choi, I., Alexandrov, A., von Laer, D. (2004). Inhibition of human immunodeficiency virus type 1 entry in cells expressing gp41-derived peptides. J Virol 78 (2), 568–575CrossRefPubMedGoogle Scholar
  32. 32.
    Anderson, W. F. (1998). Human gene therapy. Nature 392, 25–30CrossRefPubMedGoogle Scholar
  33. 33.
    Miller, D.G., Adam, M.A., Miller, A.D. (1990). Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10, 4239–4242PubMedGoogle Scholar
  34. 34.
    Roe, T., Reynolds, T.C., Yu, G., Brown, P.O. (1993). Integration of murine leukemia virus DNA depends on mitosis. EMBO J12, 2099–2108PubMedGoogle Scholar
  35. 35.
    Vigna, E., Naldini, L. (2000). Lentiviral vec-tors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med2, 308–316CrossRefPubMedGoogle Scholar
  36. 36.
    Bukrinsky, M.I., Sharova, N., Dempsey, M.P., Stanwick, T.L., Haggerty, S., Stevenson, M. (1992). Active nuclear import of human immunodeficiency virus type 1 preintegra-tion complexes. Proc Natl Acad Sci U S A89, 6580–6584CrossRefPubMedGoogle Scholar
  37. 37.
    Lewis, P., Hensel, M., Emerman, M. (1992). Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J11, 3053–3058PubMedGoogle Scholar
  38. 38.
    Weinberg, J.B., Matthews, T.J., Cullen, B.R., Malim, M.H. (1991). Productive human immunodeficiency virus type 1 (HIV-1) infection of non proliferative human cells. J Exp Med174, 1477–1482CrossRefPubMedGoogle Scholar
  39. 39.
    Sutton, R.E., Reitsma, M.J., Uchida, N., Brown, P.O. (1999). Transduction of human progenitor hematopoietic stem cells by human immunodeficiency virus type 1-based vectors is cell cycle dependent. J Virol73, 3649–3660PubMedGoogle Scholar
  40. 40.
    Kootstra, N.A., Zwart, B.M., Schuitemaker, H. (2000). Diminished human immunodeficiency virus type 1 reverse transcription and nuclear transport in primary macrophages arrested in early G(1) phase of the cell cycle. J Virol74, 1712–1717CrossRefPubMedGoogle Scholar
  41. 41.
    Neil, S., Martin, F., Ikeda, Y., Collins, M. (2001). Postentry restriction to human immunodeficiency virus-based vector transduction in human monocytes. J Virol75, 5448–5456CrossRefPubMedGoogle Scholar
  42. 42.
    Dardalhon, V., Herpers, B., Noraz, N., Pflumio, F., Guetard, D., Leveau, C., Dubart-kupper-schmitt, A., Charneau, P., Taylor, N. (2001). Lentivirus-mediated gene transfer in primary T cells is enhanced by a central DNA flap. Gene ther8, 190–198CrossRefPubMedGoogle Scholar
  43. 43.
    Stevenson, M., Stanwick, T.L., Dempsey, M.P., Lamonica, C.A. (1990). HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J9, 1551–1560PubMedGoogle Scholar
  44. 44.
    Sun, Y., Pinchuk, L.M., Agy, M.B., Clark, E.A. (1997). Nuclear import of HIV-1 DNA in resting CD4+ T cells requires a cyclosporin A-sensitive pathway. J Immunol 158, 512–517PubMedGoogle Scholar
  45. 46.
    Zack, J.A., Haislip, A.M., Krogstad, P., Chen, I.S.Y. (1992). Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. J Virol 68, 1717–1725Google Scholar
  46. 47.
    Zack, J.A. (1995). The role of the cell cycle in HIV-1 infection. Adv.Exp.Med.Biol374, 27–31PubMedGoogle Scholar
  47. 48.
    Korin, Y.D., Zack, J.A. (1993). Progression to the G1b phase of the cell cycle is required for completion of human immunodeficiency virus type 1 reverse transcription in T cells. J Virol 72, 3161–3168Google Scholar
  48. 49.
    Bukrinsky, M.I., Haggerty, S., Dempsey, M.P., Sharova, N., Adzhubel, A., Spitz, L., Lewis, P., Goldfarb, D., Emerman, M., Stevenson, M. (1993). A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365, 666–669CrossRefPubMedGoogle Scholar
  49. 50.
    Korin, Y.D., Zack, J.A. (1999). Nonproduc-tive human immunodeficiency virus type 1 infection in nucleoside-treated Go lymphocytes. J Virol 73, 6526–6532PubMedGoogle Scholar
  50. 51.
    Unutmaz, D., KewalRamani, V.N., Marmon, S., Littman, D.R. (1999). Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J Exp Med 189, 1735–1746CrossRefPubMedGoogle Scholar
  51. 52.
    Maurice, M., Verhoeyen, E., Salmon, P., Trono, D., Russell, S.J., Cosset, F.-L. (2002). Efficient gene transfer into human primary blood lymphocytes by surface-engineered len-tiviral vectors that display a T cell-activating polypeptide. Blood 99, 2342–2350.CrossRefPubMedGoogle Scholar
  52. 53.
    Roth, M.D. (1994). Interleukin 2 induces the expression of CD45RO and the memory phe-notype by CD45RA+ peripheral blood lymphocytes. J Exp Med 179 (3), 857–864CrossRefPubMedGoogle Scholar
  53. 54.
    Marktel, S., Magnani, Z., Ciceri, F., Cazza-niga, S., Riddell, S.R., Traversari, C., Bordi-gnon, C., Bonini, C. (2003). Immunologic potential of donor lymphocytes expressing a suicide gene for early immune reconsti-tution after hematopoietic T-cell-depleted stem cell transplantation. Blood 101 (4), 1290–1298CrossRefPubMedGoogle Scholar
  54. 55.
    Ferrand, C., Robinet, E., Contassot, E., Cer-toux, J.M., Lim, A., Her ve, P., Tiberghien, P. (2000). Retrovirus-mediated gene transfer in primary T lymphocytes: influence of the transduction/selection process and of ex vivo expansion on the T cell receptor beta chain hypervariable region repertoire. Hum Gene Ther 11 (8), 1151–1164CrossRefPubMedGoogle Scholar
  55. 56.
    Verhoeyen, E., Dardalhon, V., Ducrey-Rundquist, O., Trono, D., Taylor, N., Cosset, F.-L. (2003). IL-7 surface-engineered lentivi-ral vectors promote survival and efficient gene transfer in resting primary T-lymphocytes. Blood 101, 2167–2174CrossRefPubMedGoogle Scholar
  56. 57.
    Fry, T.J., Mackall, C.L. (2001) Interleukin-7: master regulator of peripheral T-cell homeos-tasis? Trends Immunol 22 (10), 564–571CrossRefPubMedGoogle Scholar
  57. 58.
    Geiselhart, L.A., Humphries, C.A., Grego-rio, T.A., Mou, S., Subleski, J., Komschlies, K.L. (2001). IL-7 administration alters the CD4:CD8 ratio, increases T cell numbers, and increases T cell function in the absence of activation. J Immunol 166 (5), 3019–3027PubMedGoogle Scholar
  58. 59.
    Rathmell, J.C., Farkash, E.A., Gao, W., Thompson, C.B. (2001). IL-7 enhances the survival and maintains the size of naive T cells. J Immunol 167 (12), 6869–6876PubMedGoogle Scholar
  59. 60.
    Cavalieri, S., Cazzaniga, S., Geuna, M., Mag-nani, Z., Bordignon, C., Naldini, L., Bonini, C. (2003). Human T lymphocytes transduced by lentiviral vectors in the absence of TCR activation maintain an intact immune competence. Blood 102 (2), 497–505CrossRefPubMedGoogle Scholar
  60. 61.
    Dardalhon, V., Jaleco, S., Kinet, S., Herpers, B., Steinberg, M., Ferrand, C., Froger, D., Leveau, C., Tiberghien, P., Charneau, P., Noraz, N., Taylor, N. (2001). IL-7 differentially regulates cell cycle progression and HIV-1-based vector infection in neonatal and adult CD4+ T cells. Proc Natl Acad Sci U S A 98 (16), 9277–82CrossRefPubMedGoogle Scholar
  61. 62.
    Ducrey-Rundquist, O., Guyader, M., Trono, D. (2002). Modalities of interleukin-7-in-duced human immunodeficiency virus permissiveness in quiescent T lymphocytes. J Virol 76 (18), 9103–9111CrossRefPubMedGoogle Scholar
  62. 63.
    Swainson, L., Verhoeyen, E., Cosset, F.L., Taylor, N. (2006). IL-7R alpha gene expression is inversely correlated with cell cycle progression in IL-7-stimulated T lymphocytes. J Immunol 176 (11), 6702–6708PubMedGoogle Scholar
  63. 64.
    Soares, M.V., Borthwick, N.J., Maini, M.K., Janossy, G., Salmon, M., Akbar, A.N. (1998). IL-7-dependent extrathymic expansion of CD45RA+ T cells enables preservation of a naive repertoire. J Immunol 161 (11), 5909–5917PubMedGoogle Scholar
  64. 65.
    Webb, L.M., Foxwell, B.M., Feldmann, M. (1999) Putative role for interleukin-7 in the maintenance of the recirculating naive CD4+ T-cell pool. Immunology 98 (3), 400–405CrossRefPubMedGoogle Scholar
  65. 66.
    Frecha, C., Costa, C., Negre, D., Gauthier, E., Russell, S.J., Cosset, F.L., Verhoeyen, E. (2008) Stable transduction of quiescent T-cells without induction of cycle progression by a novel lentiviral vector pseudotyped with measles virus glycoproteins. Blood, Sep 23 [Epub ahead of print]Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Els Verhoeyen
    • 1
  • Caroline Costa
    • 1
  • Francois-Loic Cosset
    • 1
  1. 1.Ecole Normale Superior LyonLyonFrance

Personalised recommendations