The Nucleus pp 205-239

Part of the Methods in Molecular Biology book series (MIMB, volume 463)

Multicolor 3D Fluorescence In Situ Hybridization for Imaging Interphase Chromosomes

  • Marion Cremer
  • Florian Grasser
  • Christian Lanctôt
  • Stefan Müller
  • Michaela Neusser
  • Roman Zinner
  • Irina Solovei
  • Thomas Cremer


Fluorescence in situ hybridization (FISH) of specific DNA probes has become a widely used technique mostly for chromosome analysis and for studies of the chromosomal location of specific DNA segments in metaphase preparations as well as in interphase nuclei. FISH on 3D-preserved nuclei (3D-FISH) in combination with 3D-microscopy and image reconstruction is an efficient tool to analyze the spatial arrangement of targeted DNA sequences in the nucleus. Recent developments of a “new generation” of confocal microscopes that allow the distinct visualization of at least five different fluorochromes within one experiment opened the way for multicolor 3D-FISH experiments. Thus, numerous differently labeled nuclear targets can be delineated simultaneously and their spatial interrelationships can be analyzed on the level of individual nuclei.

In this chapter, we provide protocols for the preparation of complex DNA-probe sets suitable for 3D-FISH with up to six different fluorochromes, for 3D-FISH on cultured mammalian cells (growing in suspension or adherently) as well as on tissue sections, and for 3D immuno-FISH.

In comparison with FISH on metaphase chromosomes and conventional interphase cytogenetics, FISH on 3D-preserved nuclei requires special demands with regard to probe quality, fixation, and pretreatment steps of cells in order to achieve the two goals, namely the best possible preservation of the nuclear structure and at the same time an efficient probe accessibility.


Multicolor 3D-FISH Interphase Chromosomes Imaging 


  1. 1.
    Cremer, T., Cremer, M., Dietzel, S., Muller, S., Solovei, I., and Fakan, S. (2006) Chromosome territories-a functional nuclear landscape. Curr. Opin. Cell Biol. 18, 307–316.PubMedCrossRefGoogle Scholar
  2. 2.
    Foster, H. A. and Bridger, J. M. (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114, 212–229.PubMedCrossRefGoogle Scholar
  3. 3.
    Kosak, S. T. and Groudine, M. (2004) Form follows function: The genomic organization of cellular differentiation. Genes Dev. 18, 1371–1384.PubMedCrossRefGoogle Scholar
  4. 4.
    Parada, L. A., Sotiriou, S., and Misteli, T. (2004) Spatial genome organization. Exp. Cell Res. 296, 64–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Walter, J., Joffe, B., Bolzer, A., Albiez, H., Benedetti, P., Müller, S., Speicher, M., Cremer, T., Cremer, M., and Solovei, I. (2006) Towards many colors in FISH on 3D-preserved interphase nuclei. Cytogenet. Genome Res. 114, 367–378.PubMedCrossRefGoogle Scholar
  6. 6.
    Giepmans, B. N., Adams, S. R., Ellisman, M. H., and Tsien, R. Y. (2006) The fluorescent toolbox for assessing protein location and function. Science 312, 217–224.PubMedCrossRefGoogle Scholar
  7. 7.
    Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., de Wit, E., van Steensel, B., and de Laat, W. (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354.PubMedCrossRefGoogle Scholar
  8. 8.
    Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R., and Flavell, R. A. (2005) Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645.PubMedCrossRefGoogle Scholar
  9. 9.
    Wurtele, H. and Chartrand, P. (2006) Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended chromosome conformation capture methodology. Chromosome Res. 14, 477–495.PubMedCrossRefGoogle Scholar
  10. 10.
    Conchello, J. A. and Lichtman, J. W. (2005) Optical sectioning microscopy. Nat. Methods 2, 920–931.PubMedCrossRefGoogle Scholar
  11. 11.
    Pawley, J. B. (ed.) (2006) Handbook of biological confocal microscopy. Springer, Berlin.Google Scholar
  12. 12.
    Telenius, H., Carter, N. P., Bebb, C. E., Nordenskjold, M., Ponder, B. A., and Tunnacliffe, A. (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 13, 718–725.PubMedCrossRefGoogle Scholar
  13. 13.
    Dean, F. B., Nelson, J. R., Giesler, T. L., and Lasken, R. S. (2001) Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 11, 1095–1099.PubMedCrossRefGoogle Scholar
  14. 14.
    Bolzer, A., Kreth, G., Solovei, I., Koehler, D., Saracoglu, K., Fauth, C., Muller, S., Eils, R., Cremer, C., Speicher, M. R., and Cremer, T. (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 3, e157.PubMedCrossRefGoogle Scholar
  15. 15.
    Fauth, C. and Speicher, M. R. (2001) Classifying by colors: FISH-based genome analysis. Cytogenet. Cell Genet. 93, 1–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Henegariu, O., Bray-Ward, P., and Ward, D. C. (2000) Custom fluorescent-nucleotide synthesis as an alternative method for nucleic acid labeling. Nat. Biotechnol. 18, 345–348.PubMedCrossRefGoogle Scholar
  17. 17.
    Solovei, I., Cavallo, A., Schermelleh, L., Jaunin, F., Scasselati, C., Cmarko, D., Cremer, C., Fakan, S., and Cremer, T. (2002b) Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp. Cell Res. 276, 10–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Solovei, I., Walter, J., Cremer, M., Habermann, F., Schermelleh, L., and Cremer, T. (2002a). In: FISH: a practical approach (Squire, J., Beatty, B., and Mai, S., eds.), pp. 119–157, Oxford University Press, Oxford.Google Scholar
  19. 19.
    Brown, K. (2002) Visualizing nuclear proteins together with transcribed and inactive genes in structurally preserved cells. Methods 26, 10–18.PubMedCrossRefGoogle Scholar
  20. 20.
    Grimaud, C., Bantignies, F., and Cavalli, G. (2005) Epigenome network of excellence: protocols (
  21. 21.
    Lavrov, S., Déjardin, J., and Cavalli, G. (2004) Combined immunostaining and FISH analysis of polytene chromosomes. Methods Mol. Biol. 247, 289–303.PubMedGoogle Scholar

Copyright information

© Humana Press 2012

Authors and Affiliations

  • Marion Cremer
    • 1
  • Florian Grasser
    • 1
  • Christian Lanctôt
    • 1
  • Stefan Müller
    • 1
  • Michaela Neusser
    • 1
  • Roman Zinner
    • 1
  • Irina Solovei
    • 1
  • Thomas Cremer
    • 1
  1. 1.Department of Biology IILudwig-Maximilians-University BiozentrumPlanegg-MartinsriedGermany

Personalised recommendations