Advertisement

Generation of Osteoclasts In Vitro, and Assay of Osteoclast Activity

  • Naoyuki Takahashi
  • Nobuyuki Udagawa
  • Yasuhiro Kobayashi
  • Tatsuo Suda
Part of the Methods in Molecular Medicine book series (MIMM, volume 135)

Abstract

Osteoclasts are bone-resorbing multinucleated cells derived from the monocytemacrophage lineage. The authors have developed a mouse marrow culture system and a coculture system of mouse osteoblasts and hemopoietic cells, in which osteoclasts are formed in response to various osteotropic factors such as 1α,25-dihydroxyvitamin D3, parathyroid hormone, prostaglandin E2, and interleukin -11. Recent studies have revealed that osteoblasts express two cytokines essential for osteoclastogenesis: receptor activator of nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Using RANKL and M-CSF, we can induce osteoclasts from monocytemacrophage lineage cells even in the absence of osteoblasts. This chapter describes the methods for osteoclast formation in vitro in the presence and absence of osteoblasts, and for pit-formation assay using dentine slices and osteoclasts formed in vitro. These culture systems have made it possible to investigate each step of osteoclast development and function separately.

Key Words

Osteoclast osteoblast RANKL RANK M-CSF bone marrow cell RAW264.7 cell collagen gel-culture 1α,25-(OH)2D3 TRAP calcitonin bisphosphonate pit assay 

References

  1. 1.
    Chambers, T. J. (2000) Regulation of the differentiation and function of osteoclasts. J. Pathol. 192, 4–13.PubMedCrossRefGoogle Scholar
  2. 2.
    Roodman, G. D. (1996) Advances in bone biology: the osteoclast. Endocr. Rev. 17, 308–332.PubMedGoogle Scholar
  3. 3.
    Teitelbaum, S. L. and Ross, F. P. (2003) Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4, 638–649.PubMedCrossRefGoogle Scholar
  4. 4.
    Takahashi, N., Yamana, H., Yoshiki, S., et al. (1988) Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology 122, 1373–1382.PubMedCrossRefGoogle Scholar
  5. 5.
    Suda, T., Takahashi, N., and Martin, T. J. (1992) Modulation of osteoclast differentiation. Endocr. Rev. 13, 66–80.PubMedGoogle Scholar
  6. 6.
    Takahashi, N., Akatsu, T., Udagawa, N., et al. (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology 123, 2600–2602.PubMedCrossRefGoogle Scholar
  7. 7.
    Yoshida, H., Hayashi, S., Kunisada, T., et al. (1990) The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444.PubMedCrossRefGoogle Scholar
  8. 8.
    Felix, R., Cecchini, M. G., and Fleisch, H. (1990) Macrophage colony stimulating factor restores in vivo bone resorption in the op/op osteopetrotic mouse. Endocrinology 127, 2592–2594.PubMedCrossRefGoogle Scholar
  9. 9.
    Takahashi, N., Udagawa, N., Akatsu, T., Tanaka, H., Isogai, Y., and Suda, T. (1991) Deficiency of osteoclasts in osteopetrotic mice is due to a defect in the local microenvironment provided by osteoblastic cells. Endocrinology 128, 1792–1796.PubMedCrossRefGoogle Scholar
  10. 10.
    Yasuda, H., Shima, N., Nakagawa, N., et al. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597–3602.PubMedCrossRefGoogle Scholar
  11. 11.
    Lacey, D. L., Timms, E., Tan, H. L., et al. (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176.PubMedCrossRefGoogle Scholar
  12. 12.
    Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M. T., and Martin, T. J. (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345–357.PubMedCrossRefGoogle Scholar
  13. 13.
    Boyle, W. J., Simonet, W. S., and Lacey, D. L. (2003) Osteoclast differentiation and activation. Nature 423, 337–342.PubMedCrossRefGoogle Scholar
  14. 14.
    Hsu, H., Lacey, D. L., Dunstan, C. R., et al. (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. USA 96, 3540–3545.PubMedCrossRefGoogle Scholar
  15. 15.
    Akatsu, T., Tamura, T., Takahashi, N et al. (1992) Preparation and characterization of a mouse multinucleated cell population. J. Bone Miner. Res. 7, 1297–1306.PubMedCrossRefGoogle Scholar
  16. 16.
    Tamura, T., Takahashi, N., Akatsu, T., et al. (1993) A new resorption assay with mouse osteoclast-like multinucleated cells formed in vitro. J. Bone Miner. Res. 8, 953–960.PubMedCrossRefGoogle Scholar
  17. 17.
    Udagawa, N., Takahashi, N., Akatsu, T., et al. (1990) Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc. Natl. Acad. Sci. USA 87, 7260–7264.PubMedCrossRefGoogle Scholar
  18. 18.
    Kobayashi, K., Takahashi, N., Jimi, E., et al. (2000) Tumor necrosis factor a stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKLRANK interaction. J. Exp. Med. 191, 275–286.PubMedCrossRefGoogle Scholar
  19. 19.
    Fuller, K., Murphy, C., Kirstein, B., Fox, S. W., and Chambers, T. J. (2002) TNFα potently activates osteoclasts, through a direct action independent of and strongly synergistic with RANKL. Endocrinology 143, 1108–1118.PubMedCrossRefGoogle Scholar
  20. 20.
    Udagawa, N., Takahashi, N., Akatsu, T., et al. (1989) The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology 125, 1805–1813.PubMedCrossRefGoogle Scholar
  21. 21.
    Suda, T., Jimi, E., Nakamura, I., and Takahashi, N. (1997) Role of 1α, 25-dihydroxyvitamin D3 in osteoclast differentiation and function. Methods Enzymol. 282, 223–235.PubMedCrossRefGoogle Scholar
  22. 22.
    Jimi, E., Ikebe, T., Takahashi, N., Hirata, N., Suda, T., and Koga, T. (1996) Interleukin-1b activates an NF-κB-like factor in osteoclast-like cells. J. Biol. Chem. 271, 4605–4608.PubMedCrossRefGoogle Scholar
  23. 23.
    Nakamura, I., Jimi, E., Duong, L. T., et al. (1998), Tyrosine phosphorylation of p130Cas is involved in actin organization in osteoclasts. J. Biol. Chem. 273, 11,144–11,149.PubMedCrossRefGoogle Scholar
  24. 24.
    Suda, T., Nakamura, I., Jimi, E., and Takahashi, N. (1997) Regulation of osteoclast function. J. Bone Miner. Res. 12, 869–879.PubMedCrossRefGoogle Scholar
  25. 25.
    Udagawa, N., Takahashi, N., Sasaki, T., et al. (1992) Failure of bone resorption in osteosclerotic (oc/oc) mice is due to a microenvironment. In: Calcium Regulating Hormones and Bone Metabolism, Cohn, D. V., Gennari C, Tashjian, A. H. Jr., eds., Elsevier Science Publishers, pp. 151–156.Google Scholar
  26. 26.
    Zambonin-Zallone, A., Teti, A., Carano, A., and Marchisio, P. C. (1988) The distribution of podosomes in osteoclasts cultured on bone laminae, effect of retinol. J. Bone Miner. Res. 3, 517–523.PubMedCrossRefGoogle Scholar
  27. 27.
    Chellaiah, M. A., Soga, N., Swanson, S., et al. (2000) Rho-A is critical for osteoclast podosome organization, motility, and bone resorption. J. Biol. Chem. 275, 11,993–12,002.PubMedCrossRefGoogle Scholar
  28. 28.
    Nakamura, I., Takahashi, N., Sasaki, T., Jimi, E., Kurokawa, T., and Suda, T. (1996) Chemical and physical properties of the extracellular matrix are required for the actin ring formation in osteoclasts. J. Bone Miner. Res. 11, 1873–1879.PubMedCrossRefGoogle Scholar
  29. 29.
    Suzuki, H., Nakamura, I., Takahashi, N., et al. (1996) Calcitonin-induced changes in cytoskeleton are mediated by a signal pathway associated with protein kinase A in osteoclasts. Endocrinology 137, 4685–4690.PubMedCrossRefGoogle Scholar
  30. 30.
    Murakami, H., Takahashi, N., Sasaki, T., et al. (2995) A possible mechanism of the specific action of bisophosphonates on osteoclasts: Tiludronate preferentially affects polarized osteoclasts having ruffled borders. Bone 17, 137–144.CrossRefGoogle Scholar
  31. 31.
    Simonet, W. S., Lacey, D. L., Dunstan, C. R., et al. (1997) Osteoprotegerin, a novel secreted protein involved in the regulation of bone density. Cell 89, 309–319.PubMedCrossRefGoogle Scholar
  32. 32.
    Tsuda, E., Goto, M., Mochizuki, S., et al. (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem. Biophys. Res. Commun. 234, 137–142.PubMedCrossRefGoogle Scholar
  33. 33.
    Wong, B. R., Rho, J., Arron, J., et al. (1997) TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 272, 25,190–25,194.PubMedCrossRefGoogle Scholar
  34. 34.
    Anderson, D. M., Maraskovsky, E., Billingsley, W. L., et al. (1997) A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 390, 175–179.PubMedCrossRefGoogle Scholar
  35. 35.
    The American Society for Bone and Mineral Research President’s Committee on Nomenclature (2000) Proposed standard nomenclature for new tumor necrosis factor family members involved in the regulation of bone resorption. J. Bone Miner. Res. 15, 2293–2296.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Naoyuki Takahashi
    • 1
  • Nobuyuki Udagawa
    • 2
  • Yasuhiro Kobayashi
    • 1
  • Tatsuo Suda
    • 3
  1. 1.Institute for Oral ScienceMatsumoto Dental UniversityNaganoJapan
  2. 2.Department of BiochemistryMatsumoto Dental UniversityNaganoJapan
  3. 3.Research Centre for Genomic MedicineSaitama Medical SchoolSaitamaJapan

Personalised recommendations