Advertisement

The Expression of Exogenous Genes in Macrophages: Obstacles and Opportunities

  • Xia Zhang
  • Justin P. Edwards
  • David M. Mosser
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 531)

Summary

Over the past three decades many techniques for expressing exogenous genes in a variety of cells and cell lines have been developed. Exogenous gene expression in macrophages has lagged behind that of other nonhematopioetic cells. There are many reasons for this, but most are due to technical difficulties associated with transfecting macrophages. As professional phagocytes, macrophages are endowed with many potent degradative enzymes that can disrupt nucleic acid integrity and make gene transfer into these cells an inefficient process. This is especially true of activated macrophages which undergo a dramatic change in their physiology following exposure to immune or inflammatory stimuli. Viral transduction of these cells has been hampered because macrophages are end-stage cells that generally do not divide; therefore, some of the vectors that depend on integration into a replicative genome have met with limited success. Furthermore, macrophages are quite responsive to “danger signals,” and therefore several of the original viral vectors that were used for gene transfer induced potent anti-viral responses in these cells making these vectors inappropriate for gene delivery. Many of these difficulties have been largely overcome, and relatively high efficiency gene expression in primary human or murine macrophages is becoming more routine. In the present chapter we discuss some of the gene expression techniques that have met with success and review the advantages and disadvantages of each.

Keywords

Adenovirus DEAE-dextran Electroporation Lentivirus Nucleoporation Transduction Transfection Retrovirus Vector 

References

  1. 1.
    McCutchan, J. H. and Pagano, J. S. (1968) Enhancement of the infectivity of simian virus 40 deoxyribonucleic acid with diethylaminoethyl-dextran. J Natl Cancer Inst 41, 351–357.PubMedGoogle Scholar
  2. 2.
    Vaheri, A. and Pagano, J. S. (1965) Infectious poliovirus RNA: a sensitive method of assay. Virology 27, 434–436.PubMedCrossRefGoogle Scholar
  3. 3.
    Graham, F. L. and van der Eb, A. J. (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456–467.PubMedCrossRefGoogle Scholar
  4. 4.
    Loyter, A., Scangos, G. A., and Ruddle, F. H. (1982) Mechanisms of DNA uptake by mammalian cells: fate of exogenously added DNA monitored by the use of fluorescent dyes. Proc Natl Acad Sci U S A 79, 422–426.PubMedCrossRefGoogle Scholar
  5. 5.
    Mack, K. D., Wei, R., Elbagarri, A., Abbey, N., and McGrath, M. S. (1998) A novel method for DEAE-dextran mediated transfection of adherent primary cultured human macrophages. J Immunol Methods 211, 79–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Thompson, C. D., Frazier-Jessen, M. R., Rawat, R., Nordan, R. P., and Brown, R. T. (1999) Evaluation of methods for transient transfection of a murine macrophage cell line, RAW 264.7. Biotechniques 27, 824–830, 832.PubMedGoogle Scholar
  7. 7.
    Fraley, R., Subramani, S., Berg, P., and Papahadjopoulos, D. (1980) Introduction of liposome-encapsulated SV40 DNA into cells. J Biol Chem 255, 10431–10435.PubMedGoogle Scholar
  8. 8.
    Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wanz, M., et al. (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84, 7413–7417.PubMedCrossRefGoogle Scholar
  9. 9.
    Glorioso, J. C., Huang, L., Dunbar, C., and Felgner, P. L. (2000) Highlights from the third annual ASGT meeting. American Society of Gene Therapy. Mol Ther 2, 96–100.PubMedCrossRefGoogle Scholar
  10. 10.
    Friend, D. S., Papahadjopoulos, D., and Debs, R. J. (1996) Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim Biophys Acta 1278, 41–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Farhood, H., Serbina, N., and Huang, L. (1995) The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta 1235, 289–295.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang, X., Wang, J. M., Gong, W. H., Mukaida, N., and Young, H. A. (2001) Differential regulation of chemokine gene expression by 15-deoxy-delta 12,14 prostaglandin J2. J Immunol 166, 7104–7111.PubMedGoogle Scholar
  13. 13.
    Baum, C., von Kalle, C., Staal, F. J., Li, Z., Fehse, B., Schmidt, M., et al. (2004) Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 9, 5–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., McCormack, M. P., Wulffraat, N., Leboulch, P., et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419.PubMedCrossRefGoogle Scholar
  15. 15.
    von Kalle, C., Fehse, B., Layh-Schmitt, G., Schmidt, M., Kelly, P., and Baum, C. (2004) Stem cell clonality and genotoxicity in hematopoietic cells: gene activation side effects should be avoidable. Semin Hematol 41, 303–318.PubMedCrossRefGoogle Scholar
  16. 16.
    Engelman, A. (2005) The ups and downs of gene expression and retroviral DNA integration. Proc Natl Acad Sci U S A 102, 1275–1276.PubMedCrossRefGoogle Scholar
  17. 17.
    He, T. C., Zhou, S., da Costa, L. T., Yu, J., Kinzler, K. W., and Vogelstein, B. (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95, 2509–2514.PubMedCrossRefGoogle Scholar
  18. 18.
    Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1, 841–845.PubMedGoogle Scholar
  19. 19.
    Wong, T. K., and Neumann, E. (1982) Electric field mediated gene transfer. Biochem Biophys Res Commun 107, 584–587.PubMedCrossRefGoogle Scholar
  20. 20.
    Potter, H., Weir, L., and Leder, P. (1984) Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci U S A 81, 7161–7165.PubMedCrossRefGoogle Scholar
  21. 21.
    Potter, H. (1988) Electroporation in biology: methods, applications, and instrumentation. Anal Biochem 174, 361–373.PubMedCrossRefGoogle Scholar
  22. 22.
    Lukacs, G. L., Rotstein, O. D., and Grinstein, S. (1990) Phagosomal acidification is mediated by a vacuolar-type H(+)-ATPase in murine macrophages. J Biol Chem 265, 21099–21107.PubMedGoogle Scholar
  23. 23.
    Stacey, K. J., Ross, I. L., and Hume, D. A. (1993) Electroporation and DNA-dependent cell death in murine macrophages. Immunol Cell Biol 71, 75–85.PubMedCrossRefGoogle Scholar
  24. 24.
    Martinet, W., Schrijvers, D. M., and Kockx, M. M. (2003) Nucleofection as an efficient nonviral transfection method for human monocytic cells. Biotechnol Lett 25, 1025–1029.PubMedCrossRefGoogle Scholar
  25. 25.
    Lenz, P., Bacot, S. M., Frazier-Jessen, M. R., and Feldman, G. M. (2003) Nucleoporation of dendritic cells: efficient gene transfer by electroporation into human monocyte-derived dendritic cells. FEBS Lett 538, 149–154.PubMedCrossRefGoogle Scholar
  26. 26.
    Van De Parre, T. J., Martinet, W., Schrijvers, D. M., Herman, A. G., and De Meyer, G. R. (2005) mRNA but not plasmid DNA is efficiently transfected in murine J774A.1 macrophages. Biochem Biophys Res Commun 327, 356–360.PubMedCrossRefGoogle Scholar
  27. 27.
    Cao, S., Zhang, X., Edwards, J. P., and Mosser, D. M. (2006) NF-kappaB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. J Biol Chem 281, 26041–26050.PubMedCrossRefGoogle Scholar
  28. 28.
    Lucas, M., Zhang, X., Prasanna, V., and Mosser, D. M. (2005) ERK activation following macrophage FcgammaR ligation leads to chromatin modifications at the IL-10 locus. J Immunol 175, 469–477.PubMedGoogle Scholar
  29. 29.
    Garnier, A., Cote, J., Nadeau, I., Kamen, A., and Massie, B. (1994) Scale-up of the adenovirus expression system for the production of recombinant protein in human 293S cells. Cytotechnology 15, 145–155.PubMedCrossRefGoogle Scholar
  30. 30.
    Wurm, F., and Bernard, A. (1999) Large-scale transient expression in mammalian cells for recombinant protein production. Curr Opin Biotechnol 10, 156–159.PubMedCrossRefGoogle Scholar
  31. 31.
    Kaner, R. J., Worgall, S., Leopold, P. L., Stolze, E., Milano, E., Hidaka, C., et al. (1999) Modification of the genetic program of human alveolar macrophages by adenovirus vectors in vitro is feasible but inefficient, limited in part by the low level of expression of the coxsackie/adenovirus receptor. Am J Respir Cell Mol Biol 20, 361–370.PubMedGoogle Scholar
  32. 32.
    Huang, S., Endo, R. I., and Nemerow, G. R. (1995) Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery. J Virol 69, 2257–2263.PubMedGoogle Scholar
  33. 33.
    De, S. K., Venkateshan, C. N., Seth, P., Gajdusek, D. C., and Gibbs, C. J. (1998) Adenovirus-mediated human immunodeficiency virus-1 Nef expression in human monocytes/macrophages and effect of Nef on downmodulation of Fcgamma receptors and expression of monokines. Blood 91, 2108–2117.PubMedGoogle Scholar
  34. 34.
    Harrod, K. S., Trapnell, B. C., Otake, K., Korfhagen, T. R., and Whitsett, J. A. (1999) SP-A enhances viral clearance and inhibits inflammation after pulmonary adenoviral infection. Am J Physiol 277(3 Pt 1), L580–L588.PubMedGoogle Scholar
  35. 35.
    Zsengeller, Z., Otake, K., Hossain, S. A., Berclaz, P. Y., and Trapnell, B. C. (2000) Internalization of adenovirus by alveolar macrophages initiates early proinflammatory signaling during acute respiratory tract infection. J Virol 74, 9655–9667.PubMedCrossRefGoogle Scholar
  36. 36.
    Morelli, A. E., Larregina, A. T., Ganster, R. W., Zahorchak, A. F., Plowey, J. M., Takayama, T., et al. (2000) Recombinant adenovirus induces maturation of dendritic cells via an NF-kappaB-dependent pathway. J Virol 74, 9617–9628.PubMedCrossRefGoogle Scholar
  37. 37.
    Philpott, N. J., Nociari, M., Elkon, K. B., and Falck-Pedersen, E. (2004) Adenovirus-induced maturation of dendritic cells through a PI3 kinase-mediated TNF-alpha induction pathway. Proc Natl Acad Sci U S A 101, 6200–6205.PubMedCrossRefGoogle Scholar
  38. 38.
    Stone, D., and Lieber, A. (2006) New serotypes of adenoviral vectors. Curr Opin Mol Ther 8, 423–431.PubMedGoogle Scholar
  39. 39.
    Thummala, N. R., Ghosh, S. S., Lee, S. W., Reddy, B., Davidson, A., Horwitz, M. S., et al. (2002) A non-immunogenic adenoviral vector, coexpressing CTLA4Ig and bilirubin-uridine-diphosphoglucuronateglucuronosyltransferase permits long-term, repeatable transgene expression in the Gunn rat model of Crigler–Najjar syndrome. Gene Ther 9, 981–990.PubMedCrossRefGoogle Scholar
  40. 40.
    Kotin, R. M., Linden, R. M., and Berns, K. I. (1992) Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J 11, 5071–5078.PubMedGoogle Scholar
  41. 41.
    Berns, K. I., and Hauswirth, W. W. (1979) Adeno-associated viruses. Adv Virus Res 25, 407–449.PubMedCrossRefGoogle Scholar
  42. 42.
    Muzyczka, N. (1992) Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol 158, 97–129.PubMedCrossRefGoogle Scholar
  43. 43.
    Qing, K., Mah, C., Hansen, J., Zhou, S., Dwarki, V., and Srivastava, A. (1999) Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 5, 71–77.PubMedCrossRefGoogle Scholar
  44. 44.
    Yang, Q., Mamounas, M., Yu, G., Kennedy, S., Leaker, B., Merson, J., et al. (1998) Development of novel cell surface CD34-targeted recombinant adenoassociated virus vectors for gene therapy. Hum Gene Ther 9, 1929–1937.PubMedCrossRefGoogle Scholar
  45. 45.
    McEachern, K. A., Nietupski, J. B., Chuang, W. L., Armentano, D., Johnson, J., Hutto, E., et al. (2006) AAV8-mediated expression of glucocerebrosidase ameliorates the storage pathology in the visceral organs of a mouse model of Gaucher disease. J Gene Med 8, 719–729.PubMedCrossRefGoogle Scholar
  46. 46.
    Santat, L., Paz, H., Wong, C., Li, L., Macer, J., Forman, S., et al. (2005) Recombinant AAV2 transduction of primitive human hematopoietic stem cells capable of serial engraftment in immune-deficient mice. Proc Natl Acad Sci U S A 102, 11053–11058.PubMedCrossRefGoogle Scholar
  47. 47.
    Becker, T. C., Noel, R. J., Coats, W. S., Gómez-Foix, A. M., Alam, T., Gerard, R. D., et al. (1994) Use of recombinant adenovirus for metabolic engineering of mammalian cells. Methods Cell Biol 43 Pt A, 161–189.PubMedCrossRefGoogle Scholar
  48. 48.
    Bewig, B., and Schmidt, W. E. (2000) Accelerated titering of adenoviruses. Biotechniques 28, 870–873.PubMedGoogle Scholar
  49. 49.
    Worgall, S., Worgall, T. S., Kostarelos, K., Singh, R., Leopold, P. L., Hackett, N. R., et al. (2000) Free cholesterol enhances adenoviral vector gene transfer and expression in CAR-deficient cells. Mol Ther 1, 39–48.PubMedCrossRefGoogle Scholar
  50. 50.
    Mayne, G. C., Borowicz, R. A., Greeneklee, K. V., Finlay-Jones, J. J., Williams, K. A., and Hart, P. H. (2003) Centrifugation facilitates transduction of green fluorescent protein in human monocytes and macrophages by adenovirus at low multiplicity of infection. J Immunol Methods 278, 45–56.PubMedCrossRefGoogle Scholar
  51. 51.
    Naldini, L., Blömer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.PubMedCrossRefGoogle Scholar
  52. 52.
    Rossi, G. R., Mautino, M. R., and Morgan, R. A. (2003) High-efficiency lentiviral vector-mediated gene transfer into murine macrophages and activated splenic B lymphocytes. Hum Gene Ther 14, 385–391.PubMedCrossRefGoogle Scholar
  53. 53.
    Koya, R. C., Weber, J. S., Kasahara, N., Lau, R., Villacres, M. C., Levine, A. M., et al. (2004) Making dendritic cells from the inside out: lentiviral vector-mediated gene delivery of granulocyte-macrophage colony-stimulating factor and interleukin 4 into CD14+ monocytes generates dendritic cells in vitro. Hum Gene Ther 15, 733–748.PubMedCrossRefGoogle Scholar
  54. 54.
    Reiser, J. (2000) Production and concentration of pseudotyped HIV-1-based gene transfer vectors. Gene Ther 7, 910–913.PubMedCrossRefGoogle Scholar
  55. 55.
    Zarrin, A. A., Malkin, L., Fong, I., Luk, K. D., Ghose, A., and Berinstein, N. L. (1999) Comparison of CMV, RSV, SV40 viral and Vlambda1 cellular promoters in B and T lymphoid and non-lymphoid cell lines. Biochim Biophys Acta 1446, 135–139.PubMedGoogle Scholar
  56. 56.
    Fouletier-Dilling, C. M., Bosch, P., Davis, A. R., Shafer, J. A., Stice, S. L., Gugala, Z., et al. (2005) Novel compound enables high-level adenovirus transduction in the absence of an adenovirus-specific receptor. Hum Gene Ther 16, 1287–1297.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang, G., Slepushkin, V., Zabner, J., Keshavjee, S., Johnston, J. C., Sauter, S. L., et al. (1999) Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect. J Clin Invest 104, R55–R62.PubMedCrossRefGoogle Scholar
  58. 58.
    Reiser, J., Harmison, G., Kluepfel-Stahl, S., Brady, R. O., Karlsson, S., and Schubert, M. (1996) Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles. Proc Natl Acad Sci U S A 93, 15266–15271.PubMedCrossRefGoogle Scholar
  59. 59.
    Shayakhmetov, D. M., Gaggar, A., Ni, S., Li, Z. Y., and Lieber, A. (2005) Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 79, 7478–7491.PubMedCrossRefGoogle Scholar
  60. 60.
    Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T., and Josephson, L. (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23, 1418–1423.PubMedCrossRefGoogle Scholar
  61. 61.
    Aoki, M., Ishii, T., Kanaoka, M., and Kimura, T. (2006) RNA interference in immune cells by use of osmotic delivery of siRNA. Biochem Biophys Res Commun 341, 326–333.PubMedCrossRefGoogle Scholar
  62. 62.
    Paukner, S., Kudela, P., Kohl, G., Schlapp, T., Friedrichs, S., and Lubitz, W. (2005) DNA-loaded bacterial ghosts efficiently mediate reporter gene transfer and expression in macrophages. Mol Ther 11, 215–223.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang, X., Edwards, J. P., and Mosser, D. M. (2006) Dynamic and transient remodeling of the macrophage IL-10 promoter during transcription. J Immunol 177, 1282–1288.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUSA

Personalised recommendations