Advertisement

Generation of a Tissue-Engineered Thymic Organoid

  • Fabrizio Vianello
  • Mark C. Poznansky
Part of the Methods in Molecular Biology™ book series (MIMB, volume 380)

Abstract

The thymic microenvironment provides essential support for the generation of a functional and diverse population of human T cells. In particular, the three-dimensional (3D) thymic architecture contributes to critical cell-cell interactions. We report that thymic stroma, arrayed on a synthetic 3D matrix, supports the development of functional human T cells from hematopoietic precursor cells. Newly generated T cells contain T-cell receptor excision circles and are both fully mature and functional. The coculture of T-cell progenitors with thymic stroma can thus be used to generate de novo functional and diverse T-cell populations. This novel tissue engineered thymic system has biological applications for the study of T-lymphopoiesis and self-tolerance as well as potential therapeutic applications including the immune reconstitution of immunocompromised patients and the induction of tolerance in individuals receiving tissue or organ transplants.

Key Words

Tissue engineering thymic organoid Treg cells thymic epithelial cells tolerance 

References

  1. 1.
    Platt, J. L. and Lakkis, F. G. (2001) A scenic overlook on the road to clinical tolerance. Trends Immunol. 22, 289–291.PubMedCrossRefGoogle Scholar
  2. 2.
    Hogquist, K. A., Baldwin, T. A., and Jameson, S. C. (2005) Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol. 5, 772–782.PubMedCrossRefGoogle Scholar
  3. 3.
    Haller, G. W., Esnaola, N., Yamada, K., et al. (1999) Thymic transplantation across an MHC class I barrier in swine. J. Immunol. 163, 3785–3792.PubMedGoogle Scholar
  4. 4.
    Yamada, K., Shimizu, A., Ierino, F. L., et al. (1999) Thymic transplantation in miniature swine. I. Development and function of the “thymokidney.” Transplantation 68, 1684–1692.PubMedCrossRefGoogle Scholar
  5. 5.
    Kuschnaroff, L. M., Overbergh, L., Sefriouni, H., Sobis, H., Vandeputte, M., and Waer, M. (1999) Effect of staphylococcal enterotoxin B injection on the development of experimental autoimmune encephalomyelitis: influence of cytokine and inducible nitric oxide synthase production. J. Neuroimmunol. 99, 157–168.PubMedCrossRefGoogle Scholar
  6. 6.
    Naji, A. (1996) Induction of tolerance by intrathymic inoculation of alloantigen. Curr. Opin. Immunol. 8, 704–709.PubMedCrossRefGoogle Scholar
  7. 7.
    Freedman, A. R., Zhu, H., Levine, J. D., Kalams, S., and Scadden, D. T. (1996) Generation of human T lymphocytes from bone marrow CD34+ cells in vitro. Nat. Med. 2, 46–51.PubMedCrossRefGoogle Scholar
  8. 8.
    McCune, J. M., Namikawa, R., Kaneshima, H., Shultz, L. D., Lieberman, M., and Weissman, I. L. (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241, 1632–1639.PubMedCrossRefGoogle Scholar
  9. 9.
    Fisher, A. G., Larsson, L., Goff, L. K., Restall, D. E., Happerfield, L., and Merkenschlager, M. (1990) Human thymocyte development in mouse organ cultures. Int. Immunol. 2, 571–578.PubMedCrossRefGoogle Scholar
  10. 10.
    Black, J. (1994) Biological performance of tantalum. Clin. Mater. 16, 167–173.PubMedCrossRefGoogle Scholar
  11. 11.
    Bobyn, J. D., Stackpool, G. J., Hacking, S. A., Tanzer, M., and Krygier, J. J. (1999) Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J. Bone Joint Surg. Br. 81, 907–914.PubMedCrossRefGoogle Scholar
  12. 12a.
    Poznansky, M., Evans, R. H., Foxall, R. B., et al. (2000) Efficient generation of human T cells from a tissue-engineered thymic organoid. Nat. Biotechnol. 18, 729–734.PubMedCrossRefGoogle Scholar
  13. 12b.
    Anderson, G. and Jenkinson, E. J. (2001) Lymphostromal interactions in thymic development and function. Nat. Rev. Immunol. 1, 31–40.PubMedCrossRefGoogle Scholar
  14. 13.
    Clark, R. A., Yamanaka, K. L, Bai, M., Dowgiert, R., and Kupper, T. S. (2005) Human skin cells support thymus-independentT cell development. J. Clin. Invest. 115, 3239–3249.PubMedCrossRefGoogle Scholar
  15. 14.
    Hiesse, C., Rieu, P., Kriaa, F., et al. (1997) Malignancy after renal transplantation: analysis of incidence and risk factors in 1700 patients followed during a 25-year period. Transplant. Proc. 29, 831–833.PubMedCrossRefGoogle Scholar
  16. 15.
    Garlie, N. K., LeFever, A. V., Siebenlist, R. E., Levine, B. L., June, C. H., and Lum, L. G. (1999) T cells coactivated with immobilized anti-CD3 and anti-CD28 as potential immunotherapy for cancer. J. Immunother. 22, 336–345.PubMedCrossRefGoogle Scholar
  17. 16.
    Port, F. K., Dykstra, D. M., Merion, R. M., and Wolfe, R. A. (2004) Organ donation and transplantation trends in the USA (2003). Am. J. Transplant. 4, 7–12.PubMedCrossRefGoogle Scholar
  18. 17.
    Kappler, J. W., Roehm, N., and Marrack, P. (1987) T cell tolerance by clonal elimination in the thymus. Cell 49, 273–280.PubMedCrossRefGoogle Scholar
  19. 18.
    Kappler, J. W., Staerz, U., White, J., and Marrack, P. C. (1988) Self-tolerance eliminates T cells specific for Mls-modified products of the major histocompatibility complex. Nature 332, 35–40.PubMedCrossRefGoogle Scholar
  20. 19.
    Sprent, J., Lo, D., Gao, E. K., and Ron, Y. (1988) T cell selection in the thymus. Immunol. Rev. 101, 173–190.PubMedCrossRefGoogle Scholar
  21. 20.
    Coutinho, A., Salaun, J., Corbel, C., Bandeira, A., and Le Douarin, N. (1993) The role of thymic epithelium in the establishment of transplantation tolerance. Immunol. Rev. 133, 225–240.PubMedCrossRefGoogle Scholar
  22. 21.
    Oluwole, S. F., Chowdhury, N. C., and Fawwaz, R. A. (1993) Induction of donor-specific unresponsiveness to rat cardiac allografts by pretreatment with intrathymic donor MHC class I antigens. Transplantation 55, 1396–1402.PubMedCrossRefGoogle Scholar
  23. 22.
    Posselt, A. M., Barker, C. R, Friedman, A. L., and Naji, A. (1992) Prevention of autoimmune diabetes in the BB rat by intrathymic islet transplantation at birth. Science 256, 1321–1324.PubMedCrossRefGoogle Scholar
  24. 23.
    Lee, L. A., Gritsch, H. A., Sergio, J. J., et al. (1994) Specific tolerance across a discordant xenogeneic transplantation barrier. Proc. Natl. Acad. Sci. USA 91, 10,864–10,867.PubMedCrossRefGoogle Scholar
  25. 24.
    Zhao, Y., Swenson, K., Sergio, J. J., Arn, J. S., Sachs, D. H., and Sykes, M. (1996) Skin graft tolerance across a discordant xenogeneic barrier. Nat. Med. 2, 1211–1216.PubMedCrossRefGoogle Scholar
  26. 25.
    Mezrich, J. D., Benjamin, L. C., Sachs, J. A., et al. (2005) Role of the thymus and kidney graft in the maintenance of tolerance to heart grafts in miniature swine. Transplantation 79, 1663–1673.PubMedCrossRefGoogle Scholar
  27. 26.
    Nikolic, B., Gardner J. P., Scadden, D. T., Arn, J. S., Sachs, D. H., and Sykes, M. (1999) Normal development in porcine thymus grafts and specific tolerance of human T cells to porcine donor MHC. J. Immunol. 162, 3402–3407.PubMedGoogle Scholar
  28. 27.
    Ichim, T. E., Zhong, R., and Min, W. P. (2003) Prevention of allograft rejection by in vitro generated tolerogenic dendritic cells. Transpl. Immunol. 11, 295–306.PubMedCrossRefGoogle Scholar
  29. 28.
    Steinman, R. M., Hawiger, D., and Nussenzweig, M. C. (2003) Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711.PubMedCrossRefGoogle Scholar
  30. 29.
    Khoury, S. J., Gallon, L., Chen, W., et al. (1995) Mechanisms of acquired thymic tolerance in experimental autoimmune encephalomyelitis: thymic dendriticenriched cells induce specific peripheral T cell unresponsiveness in vivo. J. Exp. Med. 182, 357–366.PubMedCrossRefGoogle Scholar
  31. 30.
    Bushell, A., Jones, E., Gallimore, A., and Wood, K. (2005) The generation of CD25+ CD4+ regulatory T cells that prevent allograft rejection does not compromise immunity to a viral pathogen. J. Immunol. 174, 3290–3297.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Fabrizio Vianello
    • 1
  • Mark C. Poznansky
    • 2
  1. 1.Department of HematologyUniversity Medical School of PadovaItaly
  2. 2.Infectious Diseases Division & Partners AIDS Research CenterHarvard Medical SchoolCharlestown

Personalised recommendations