Induction of Tolerance by Adoptive Transfer of Treg Cells

  • Kanji Nagahama
  • Eiji Nishimura
  • Shimon Sakaguchi
Part of the Methods in Molecular Biology™ book series (MIMB, volume 380)


Naturally arising CD4+CD25+ regulatory T (Treg) cells can be exploited to establish immunologic tolerance to allogeneic transplants. In vivo exposure of CD4+CD25+ T cells from normal naïve mice to alloantigen in a T cell-deficient environment elicits spontaneous expansion of alloantigen-specific CD4+CD25+ natural Treg cells, which are able to suppress allograft rejection mediated by subsequently transferred naïve T cells, leading to long-term graft tolerance. Similar antigen-specific expansion of natural Treg cells can also be achieved in vitro by stimulating CD4+CD25+ T cells from normal animals with alloantigen in the presence of high doses of interleukin-2. The expanded CD4+CD25+ Treg cells are even capable of suppressing secondary mixed leukocyte reaction in vitro and, by in vivo transfer, establishing antigen-specific long-term graft tolerance. Thus, in vivo or in vitro, direct or indirect ways of alloantigen-specific expansion of naturally arising CD4+CD25+ Treg cells can establish antigen-specific dominant tolerance to allogeneic transplants.

Key Words

CD4+CD25+ regulatory T cells allograft tolerance induction organ transplantation 


  1. 1.
    Sakaguchi, S., Sakaguchi, N., Shimizu, J., et al. (2001) Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity and transplantation tolerance. Immunol. Rev. 182, 18–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Maloy, K. J. and Powrie, F. (2001) Regulatory T cells in the control of immune pathology. Nat. Immunol. 2, 816–822.PubMedCrossRefGoogle Scholar
  3. 3.
    Shevach, E. M. (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2, 389–400.PubMedGoogle Scholar
  4. 4.
    Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., and Toda, M. (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164.PubMedGoogle Scholar
  5. 5.
    Asano, M., Toda, M., Sakaguchi, N., and Sakaguchi, S. (1996) Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184, 387–396.PubMedCrossRefGoogle Scholar
  6. 6.
    Suri-Payer, E., Amar, A. Z., Thornton, A. M., and Shevach, E. M. (1998) CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 160, 1212–1218.PubMedGoogle Scholar
  7. 7.
    Shimizu, J., Yamazaki, S., and Sakaguchi, S. (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218.PubMedGoogle Scholar
  8. 8.
    Sutmuller, R. P., van Duivenvoorde, L. M., van Elsas, A., et al. (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194, 823–832.PubMedCrossRefGoogle Scholar
  9. 9.
    Itoh, M., Takahashi, T., Sakaguchi, N., et al. (1999) Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326.PubMedGoogle Scholar
  10. 10.
    Takahashi, T., Kuniyasu, Y., Toda, M., et al. (1998) Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980.PubMedCrossRefGoogle Scholar
  11. 11.
    Thornton, A. M. and Shevach, E. M. (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296.PubMedCrossRefGoogle Scholar
  12. 12.
    Thornton, A. M. and Shevach, E. M. (2000) Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol. 164, 183–190.PubMedGoogle Scholar
  13. 13.
    Salomon, B., Lenschow, D. J., Rhee, L., et al. (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440.PubMedCrossRefGoogle Scholar
  14. 14.
    Takahashi, T., Tagami, T., Yamazaki, S., et al. (2000) Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310.PubMedCrossRefGoogle Scholar
  15. 15.
    Read, S., Malmstrom, V., and Powrie, F. (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302.PubMedCrossRefGoogle Scholar
  16. 16.
    Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y., and Sakaguchi, S. (2002) Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol. 3, 135–142.PubMedCrossRefGoogle Scholar
  17. 17.
    McHugh, R. S., Whitters, M. J., Piccirillo, C. A., et al. (2002) CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16, 311–323.PubMedCrossRefGoogle Scholar
  18. 18.
    Lehmann, J., Huehn, J., de la Rosa, M., et al. (2002) Expression of the integrin alpha Ebeta 7 identifies unique subsets of CD25+ as well as CD25 regulatory T cells. Proc. Natl. Acad. Sci. USA 99, 13,031–13,036.PubMedCrossRefGoogle Scholar
  19. 19.
    Caramalho, I., Lopes-Carvalho, T., Ostler, D., Zelenay, S., Haury, M., and Demengeot, J. (2003) Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J. Exp. Med. 197, 403–411.PubMedCrossRefGoogle Scholar
  20. 20.
    Hori, S., Nomura, T., and Sakaguchi, S. (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061.PubMedCrossRefGoogle Scholar
  21. 21.
    Khattri, R., Cox, T., Yasayko, S. A., and Ramsdell, F. (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342.PubMedCrossRefGoogle Scholar
  22. 22.
    Fontenot, J. D., Gavin, M. A., and Rudensky, A. Y. (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336.PubMedCrossRefGoogle Scholar
  23. 23.
    Walker, L. S., Chodos, A., Eggena, M., Dooms, H., and Abbas, A. K. (2003) Antigen-dependent proliferation of CD4+CD25+ regulatory T cells in vivo. J. Exp. Med. 198, 249–258.PubMedCrossRefGoogle Scholar
  24. 24.
    Klein, L., Khazaie, K., and von Boehmer, H. (2003) In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc. Natl. Acad. Sci. USA 100, 8886–8891.PubMedCrossRefGoogle Scholar
  25. 25.
    Yamazaki, S., Iyoda, T., Tarbell, K., et al. (2003) Direct expansion of functional CD25+CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. 198, 235–247.PubMedCrossRefGoogle Scholar
  26. 26.
    Annacker, O., Pimenta-Araujo, R., Burlen-Defranoux, O., Barbosa, T. C., Cumano, A., and Bandeira, A. (2001) CD25+CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J. Immunol. 166, 3008–3018.PubMedGoogle Scholar
  27. 27.
    Gavin, M. A., Clarke, S. R., Negrou, E., Gallegos, A., and Rudensky, A. (2002) Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nat. Immunol. 3, 33–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Fisson, S., Darrasse-Jeze, G., Litvinova, E., et al. (2003) Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J. Exp. Med. 198, 737–746.PubMedCrossRefGoogle Scholar
  29. 29.
    Sakaguchi, S., Hori, S., Fukui, Y., Sasazuki, T., Sakaguchi, N., and Takahashi, T. (2003) Thymic generation and selection of CD25+CD4+ regulatory T cells: implications of their broad repertoire and high self-reactivity for the maintenance of immunological self-tolerance. Novartis Found. Symp. 252, 6–16.PubMedCrossRefGoogle Scholar
  30. 30.
    Nishimura, E., Sakihama, T., Setoguchi, R., Tanaka, K., and Sakaguchi, S. (2004) Induction of antigen-specific immunologic tolerance by in vivo and in vitro antigen-specific expansion of naturally arising Foxp3+ CD25+CD4+ regulatory T cells. Int. Immunol. 16, 1189–1201.PubMedCrossRefGoogle Scholar
  31. 31.
    Godfrey, W. R., Ge, Y. G., Spoden, D. J., et al. (2004) In vitro-expanded human CD4(+)CD25(+) T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood 104, 453–461.PubMedCrossRefGoogle Scholar
  32. 32.
    Hoffmann, P., Eder, R., Kunz-Schughart, L. A., Andreesen, R., and Edinger, M. (2004) Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood 104, 895–903.PubMedCrossRefGoogle Scholar
  33. 33.
    Hoffmann, P., Ermann, J., Edinger, M., Fathman, C. G., and Strober, S. (2002) Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J. Exp. Med. 196, 389–399.PubMedCrossRefGoogle Scholar
  34. 34.
    Cohen, J. L., Trenado, A., Vasey, D., Klatzmann, D., and Salomon, B. L. (2002) CD4(+)CD25(+) immunoregulatory T Cells: new therapeutics for graft-versus-host disease. J. Exp. Med. 196, 401–406.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Kanji Nagahama
    • 1
  • Eiji Nishimura
    • 1
  • Shimon Sakaguchi
    • 1
  1. 1.Department of Experimental Pathology, Institute for Frontier Medical SciencesKyoto UniversityKyotoJapan

Personalised recommendations