Hepatitis C pp 361-372 | Cite as

Adaptation of the Hepatitis C Virus to Cell Culture

  • Artur Kaul
  • Ilka Wörz
  • Ralf Bartenschlager
Part of the Methods in Molecular Biology™ book series (MIMB, volume 510)


A major breakthrough in the field of HCV research was the development of a system that supports the production of infectious virus particles. The key to this achievement was the molecular cloning of a genotype 2a genome, designated JFH1, which replicates to exceptionally high levels and at the same time supports virus particle assembly and release. A major drawback of this system was, however, the rather low yield of infectious particles obtained with the JFH1 genome as well as with most JFH1-derived virus chimeras. One approach to overcoming this hurdle is adaptation of the HCV genomes to cell culture. We found that both JFH1 and all chimeras, except one, can easily be adapted to cultured cells, increasing virus yields by up to three orders of magnitude. Surprisingly, adaptation is achieved by a multitude of mutations residing in both the structural and the nonstructural proteins. We therefore argue that a complex interaction between structural proteins and the HCV replicase takes place to allow efficient virus particle production.

Key Words

Cell-culture adaptation HCV adaptation adaptive mutations virus production Huh-7 cells nonstructural proteins 



This work was supported by grants of the German Research Council (SFB 638, Teilprojekt A5 and BA 1505/2-1).


  1. 1.
    Kato, T., Furusaka, A., Miyamoto, M., Date, T., Yasui, K., Hiramoto, J., et al. (2001) Sequence analysis of hepatitis C virus isolated from a fulminant hepatitis patient. J. Med. Virol. 64, 334–339.PubMedCrossRefGoogle Scholar
  2. 2.
    Kato, T., Date, T., Miyamoto, M., Furusaka, A., Tokushige, K., Mizokami, M., et al. (2003) Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 125, 1808–1817.PubMedCrossRefGoogle Scholar
  3. 3.
    Wakita, T., Pietschmann, T., Kato, T., Date, T., Miyamoto, M., Zhao, Z., et al. (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhong, J., Gastaminza, P., Cheng, G., Kapadia, S., Kato, T., Burton, D. R., et al. (2005) Robust hepatitis C virus infection in vitro. Proc. Natl. Acad. Sci. USA 102, 9294–9299.PubMedCrossRefGoogle Scholar
  5. 5.
    Lindenbach, B. D., Evans, M. J., Syder, A. J., Wolk, B., Tellinghuisen, T. L., Liu, C. C., et al. (2005) Complete replication of hepatitis C virus in cell culture. Science 309, 623–626.PubMedCrossRefGoogle Scholar
  6. 6.
    Pietschmann, T., Kaul, A., Koutsoudakis, G., Shavinskaya, A., Kallis, S., Steinmann, E., et al. (2006) Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc. Natl. Acad. Sci. USA 103, 7408–7413.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhong, J., Gastaminza, P., Chung, J., Stamataki, Z., Isogawa, M., Cheng, G., et al. (2006) Persistent hepatitis C virus infection in vitro: coevolution of virus and host. J. Virol. 80, 11082–11093.PubMedCrossRefGoogle Scholar
  8. 8.
    Yi, M., Ma, Y., Yates, J., and Lemon, S. M. (2007) Compensatory mutations in E1, p7, NS2, and NS3 enhance yields of cell culture-infectious intergenotypic chimeric hepatitis C virus. J. Virol. 81, 629–638.PubMedCrossRefGoogle Scholar
  9. 9.
    Kaul, A., Woerz, I., Meuleman, P., Leroux-Roels, G., Bartenschlager, R. (2007) Cell culture adaptation of hepatitis C virus and in vivo viability of an adapted variant. J. Virol. 81, 13168-79.PubMedCrossRefGoogle Scholar
  10. 10.
    Blight, K. J., McKeating, J. A., and Rice, C. M. (2002) Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J. Virol. 76, 13001–13014.PubMedCrossRefGoogle Scholar
  11. 11.
    Sumpter, R., Jr., Loo, Y. M., Foy, E., Li, K., Yoneyama, M., Fujita, T., et al. (2005) Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J. Virol. 79, 2689–2699.PubMedCrossRefGoogle Scholar
  12. 12.
    Koutsoudakis, G., Herrmann, E., Kallis, S., Bartenschlager, R., and Pietschmann, T. The level of CD81 cell surface expression is a key determinant for productive entry of hepatitis C virus into host cells. J. Virol. 81, 588–598.Google Scholar
  13. 13.
    Lohmann, V., Körner, F., Koch, J. O., Herian, U., Theilmann, L., and Bartenschlager, R. (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113.PubMedCrossRefGoogle Scholar
  14. 14.
    Bartenschlager, R., Ahlborn, L. L., Mous, J., and Jacobsen, H. (1993) Nonstructural protein 3 of the hepatitis C virus encodes a serine-type proteinase required for cleavage at the NS3/4 and NS4/5 junctions. J. Virol. 67, 3835–3844.PubMedGoogle Scholar
  15. 15.
    Kärber, G. (1931) Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Arch. Exp. Pathol. Pharmakol. 162, 480–487.CrossRefGoogle Scholar
  16. 16.
    Spearman C. (1908) The method of “right and wrong cases” (“constant stimuli”) without Gauss’s formulae. Brit. J. Psychol. 2, 227–242.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Artur Kaul
    • 1
  • Ilka Wörz
    • 1
  • Ralf Bartenschlager
    • 1
  1. 1.Department of Molecular VirologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations