Hepatitis C pp 125-143

Part of the Methods in Molecular Biology™ book series (MIMB, volume 510) | Cite as

Structural and Functional Analysis of the HCV p7 Protein

  • Nathalie Saint
  • Roland Montserret
  • Christophe Chipot
  • François Penin

Abstract

The p7 membrane polypeptide from HCV is essential for virus infection. It exhibits ion-channel activity reported to be specifically blocked by various compounds. These properties make p7 an attractive candidate target for antiviral intervention to combat viral hepatitis C infection. In this context, in vitro functional analyses of isolated p7 coupled to structural characterization are critical for further understanding of the molecular mechanisms of p7 ion-channel activity and for the development of new antiviral drugs. We present here in vitro assays designed to purify synthetic p7 by RP-HPLC, to investigate its ion-channel properties by means of planar lipid-bilayer assays and patch-clamp recordings after reconstitution into liposomes, and to analyze its structural features by circular dichroism (CD), nuclear magnetic resonance (NMR), and molecular dynamics (MD).

Key Words

Ions-channel activity viroporin RP-HPLC circular dichroism (CD) nuclear magnetic resonance (NMR) molecular dynamics (MD) 

References

  1. 1.
    Sakai, A., St. Claire, M., Faulk, K., Govindarajan, S., Emerson, S. U., Purcell, R. H., et al. (2003) The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc. Natl. Acad. Sci. USA 100, 11646–11651.PubMedCrossRefGoogle Scholar
  2. 2.
    Lohmann, V., Körner, F., Koch, J. O., Herian, U., Theilmann, L., and Bartenschlager, R. (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113.PubMedCrossRefGoogle Scholar
  3. 3.
    Carrère-Kremer, S., Montpellier-Pala, C., Cocquerel, L., Wychowski, C., Penin, F., and Dubuisson, J. (2002) Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J. Virol. 76, 3720–3730.PubMedCrossRefGoogle Scholar
  4. 4.
    Griffin, S. D. C., Beales, L. P., Clarke, D. S., Worsfold, O., Evans, S. D., Jaeger, J., et al. (2003) The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett. 535, 34–38.PubMedCrossRefGoogle Scholar
  5. 5.
    Clarke, D., Griffin, S., Beales, L., Gelais, C. S., Burgess, S., Harris, M., et al. (2006) Evidence for the formation of a heptameric ion channel complex by the hepatitis C virus p7 protein in vitro. J. Biol. Chem. 281, 37057–37068.PubMedCrossRefGoogle Scholar
  6. 6.
    Pavlovic, D., Neville, D. C. A., Argaud, O., Blumberg, B., Dwek, R. A., Fischer, W. B., et al. (2003) The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc. Natl. Acad. Sci. USA 100, 6104–6108.PubMedCrossRefGoogle Scholar
  7. 7.
    Premkumar, A., Wilson, L., Ewart, G. D., and Gage, P. W. (2004) Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride. FEBS Lett. 557, 99–103.PubMedCrossRefGoogle Scholar
  8. 8.
    Gonzalez, M. E. and Carrasco, L. (2003) Viroporins. FEBS Lett. 552, 28–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Steinmann, E., Penin, F., Kallis, S., Patel, A. H., Bartenschlager, R., and Pietschmann, T. (2007) Hepatitis C Virus p7 Protein Is Crucial for Assembly and Release of Infectious Virions. PLoS Pathog. 3, e103.PubMedCrossRefGoogle Scholar
  10. 10.
    Brünger, A. T. (1992) Xplor, a System for Crystallography and NMR, Yale University Press, New Haven, CT.Google Scholar
  11. 11.
    Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486.PubMedCrossRefGoogle Scholar
  12. 12.
    Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: visual molecular dynamics. J. Mol. Graph. 14, 27–28.Google Scholar
  13. 13.
    Wuthrich, K. (ed.) (1986) NMR of Proteins and Nucleic Acids. John Wiley & Sons, New York.Google Scholar
  14. 14.
    Opella, S. J. and Marassi, F. M. (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem. Rev. 104, 3587–3606PubMedCrossRefGoogle Scholar
  15. 15.
    Montal, M. and Mueller, P. (1972) Formation of bimolecular membranes from lipids monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA 69, 3561–3566.PubMedCrossRefGoogle Scholar
  16. 16.
    Hamill, O. P., Marty, E., Neher, E., Sakmann, B., and Sigworth, F. J (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100.PubMedCrossRefGoogle Scholar
  17. 17.
    Kelly, S. M., Jess, T. J., and Price, N. C. (2005) How to study proteins by circular dichroism. Biochim Biophys Acta. 1751, 119–39.PubMedGoogle Scholar
  18. 18.
    Chen, Y.-H., Yang, J. T., and Chau, K. H. (1974) Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry 13, 3350–3359.PubMedCrossRefGoogle Scholar
  19. 19.
    Penin, F., Geourjon, C., Montserret, R., Böckmann, A., Lesage, A., Yang, Y. S., et al. (1997) Three-dimensional structure of the DNA binding domain of the fructose repressor from Escherichia coli by 1H and 15N NMR. J. Mol. Biol. 270, 496–510.PubMedCrossRefGoogle Scholar
  20. 20.
    Favier, A., Brutscher, B., Blackledge, M., Galinier, A., Deutscher, J., Penin, F., et al. (2002) Solution structure and dynamics of Crh, the Bacillus subtilis catabolite repression HPr. J. Mol. Biol. 317, 131–144.PubMedCrossRefGoogle Scholar
  21. 21.
    Vakser, I. A., Matar, O. G., and Lam, C. F. (1999) A systematic study of low-resolution recognition in protein-protein complexes. Proc. Natl. Acad. Sci. USA 96, 8477–8482.PubMedCrossRefGoogle Scholar
  22. 22.
    Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., et al. (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802.PubMedCrossRefGoogle Scholar
  23. 23.
    MacKerell, A. D., Jr., Bashford, D., Bellott, M., Dunbrack Jr., R. L., Evanseck, J. D., Field, M. J. et al. (1998) All-atom empirical potential for molecular modeling and dynamics Studies of proteins. J. Phys. Chem. B 102, 3586–3616.CrossRefGoogle Scholar
  24. 24.
    Schindler, H. (1989) Planar lipid-protein membranes: strategies of formation and of detecting dependencies of ion transport functions on membrane conditions. Meth. Enzymol. 171, 225–253PubMedCrossRefGoogle Scholar
  25. 25.
    Rigaud, J. L., Mosser, G., Lacapere, J. J, Olofsson, A., Levy, D., and Ranck, J. L. (1997) Bio-Beads: an efficient strategy for two-dimensional crystallization of membrane proteins. J. Struct. Biol. 118, 226–235.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nathalie Saint
    • 1
  • Roland Montserret
    • 2
  • Christophe Chipot
    • 3
  • François Penin
    • 2
  1. 1.Centre de Biochimie StructuraleUniversité de Montpellier I et IIMontpellierFrance
  2. 2.Institut de Biologie et Chimie des Protéines IFR128 BioSciences Gerland-Lyon SudUniversité de LyonLyon
  3. 3.Equipe de Dynamique des Assemblages MembranairesUniversité Henri PoincaréVandoeuvre-lès-Nancy CedexFrance

Personalised recommendations