Coalescent Methods for Fine-Scale Disease-Gene Mapping

  • Andrew P. Morris
Part of the Methods in Molecular Biology™ book series (MIMB, volume 376)


Fine-scale mapping methods have been developed to localize functional polymorphisms within large candidate regions identified from previous linkage and/or association studies. Population-based association fine-mapping methods utilize linkage disequilibrium of alleles at high-density marker single-nucleotide polymorphisms with the functional polymorphism, generated as the result of shared ancestry of individuals within the population. Here, we review fine-mapping methods that model the shared ancestry of sampled chromosomes explicitly, using the coalescent process, resulting in greater accuracy and precision to localize functional polymorphisms than approaches that treat individuals as unrelated.

Key Words

Bayesian methods coalescent process fine-scale mapping linkage disequilibrium Markov chain Monte Carlo methods population-based association studies 


  1. 1.
    Risch, N. and Merikangas, K. (1996) The future of genetic studies of complex diseases. Science 273, 1516–1517.CrossRefPubMedGoogle Scholar
  2. 2.
    Zondervan, K. T. and Cardon, L. R. (2004) The complex interplay among factors that influence allelic association. Nat. Rev. Genet. 5, 89–100.CrossRefPubMedGoogle Scholar
  3. 3.
    Kingman, J. F. C. (1982) The coalescent. Stoch. Proc. Appl. 13, 235–248.CrossRefGoogle Scholar
  4. 4.
    Nordborg, M. (2001) Coalescent theory. In: Handbook of Statistical Genetics (Balding, D. J., Bishop, M., and Cannings, C., eds.), Wiley, Chichester, UK, pp. 179–212.Google Scholar
  5. 5.
    McPeek, M. S. and Strahs, A. (1999) Assessment of linkage disequilibrium by the decay of haplotype sharing, with application to fine-scale genetic mapping. Am. J. Hum. Genet. 65, 858–875.CrossRefPubMedGoogle Scholar
  6. 6.
    Slatkin, M. (1996) Gene genealogies within mutant allelic classes. Genetics 143, 579–587.PubMedGoogle Scholar
  7. 7.
    Wiuf, C. and Donnelly, P. (1999) Conditional genealogies and the age of a neutral mutant. Theor. Popul. Biol. 56, 183–201.CrossRefPubMedGoogle Scholar
  8. 8.
    Hudson, R. R. (1983) Properties of a neutral allele model with intragenic recombination. Theor. Popul. Biol. 23, 183–201.CrossRefPubMedGoogle Scholar
  9. 9.
    Griffiths, R. C. and Marjoram, P. (1996) Ancestral inference from samples of DNA sequences with recombination. J. Comput. Biol. 3, 479–502.CrossRefPubMedGoogle Scholar
  10. 10.
    Griffiths, R. C. and Marjoram, P. (1997) An ancestral recombination graph. In: Progress in Population Genetics and Human Evolution, (Donnelly, P. and Tavare, S., eds.), Springer-Verlag, New York, NY, pp. 257–270.Google Scholar
  11. 11.
    Rannala, B. and Reeve, J. P. (2001) High-resolution multipoint linkage disequilibrium mapping in the context of a human genome sequence. Am. J. Hum. Genet. 69, 159–178.CrossRefPubMedGoogle Scholar
  12. 12.
    Morris, A. P., Whittaker, J. C., and Balding, D. J. (2002) Fine-scale mapping of disease loci via coalescent modelling of genealogies. Am. J. Hum. Genet. 70, 686–707.CrossRefPubMedGoogle Scholar
  13. 13.
    Liu, J. S., Sabatti, C., Teng, J., Keats, B. J. B., and Risch, N. (2001) Bayesian analysis of haplotypes for linkage disequilibrium mapping. Genome Res. 11, 1716–1724.CrossRefPubMedGoogle Scholar
  14. 14.
    Strahs, A. L. and McPeek, M. S. (2003) Multipoint fine-scale linkage disequilibrium mapping: the importance of modeling background LD. In: IMS Lecture Notes Monograph Series, Vol. 40 Science and Statistics, (Festschrift, A. and Goldstein, D. R., eds.), Institute of Mathematical Statistics, Beachwood, OH, pp. 343–366.Google Scholar
  15. 15.
    Slatkin, M. and Rannala, B. (1997) Estimating the age of alleles by the use of intraallelic variability. Am. J. Hum. Genet. 60, 447–458.PubMedGoogle Scholar
  16. 16.
    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953) Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092.CrossRefGoogle Scholar
  17. 17.
    Hastings, W. K. (1970) Monte-Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109.CrossRefGoogle Scholar
  18. 18.
    Gammerman, D. (1997) Markov Chain Monte Carlo: Stochastic Simulation for BayesianInference. Chapman and Hall, London, UK.Google Scholar
  19. 19.
    Hartigan, J. A. (1975) Clustering Algorithms. Wiley, New York, NY.Google Scholar
  20. 20.
    Zollner, S. and Pritchard, J. K. (2005) Coalescent-based association mapping and fine mapping of complex trait loci. Genetics 169, 1071–1092.CrossRefPubMedGoogle Scholar
  21. 21.
    Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefPubMedGoogle Scholar
  22. 22.
    Bertranpetit, J. and Calafell, F. (1996) Genetic and geographical variability in cystic fibrosis: evolutionary considerations. In: Variation in the Human Genome, (Weiss, K., ed.), Wiley, Chichester, UK, pp. 97–114.Google Scholar
  23. 23.
    Kerem, B., Rommens, J. M., Buchanan, J. A., et al. (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080.CrossRefPubMedGoogle Scholar
  24. 24.
    Morris, A. P., Whittaker, J. C., and Balding, D. J. (2002) Little loss of information due to unknown phase for fine-scale linkage disequilibrium mapping with single nucleotide polymorphism genotype data. Am. J. Hum. Genet. 74, 945–953.CrossRefGoogle Scholar
  25. 25.
    Stephens, M., Smith, N. J., and Donnelly, P. (2001) A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989.CrossRefPubMedGoogle Scholar
  26. 26.
    Stephens, M. and Donnelly, P. (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162–1169.CrossRefPubMedGoogle Scholar
  27. 27.
    Molitor, J., Marjoram, P., and Thomas, D. (2003) Application of Bayesian spatial statistical methods to the analysis of haplotype effects and gene mapping. Genet. Epidemiol. 25, 95–105.CrossRefPubMedGoogle Scholar
  28. 28.
    Molitor, J., Marjoram, P., and Thomas, D. (2003) Fine-scale mapping of disease genes with multiple mutations via spatial clustering techniques. Am. J. Hum. Genet. 73, 1368–1384.CrossRefPubMedGoogle Scholar
  29. 29.
    International Human Genome Sequence Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409, 860–921.CrossRefGoogle Scholar
  30. 30.
    International SNP Map Working Group (2001) A map of the human genome sequence variation contains 1.42 million single nucleotide polymorphisms. Nature 409, 860–921.CrossRefGoogle Scholar
  31. 31.
    International HapMap Consortium (2003) The international HapMap project. Nature 426, 789–795.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Andrew P. Morris
    • 1
  1. 1.Wellcome Trust Centre for Human GeneticsOxfordUK

Personalised recommendations